在一个布袋中有 3 枚硬币, 分别用 H 、 T 、 F 表示, H的两面都是正面, T的两面 都是反面,而 F是一个一正一反的均匀硬币。随机选择一枚硬币并投郑两次,用 X 表示 所选择的硬币, [tex=2.357x1.214]S29qqUhous3fUkTsGmUnDA==[/tex] 表示两次投掷的结果, Z 表示两次投郑中出现正面的次数。求:[br][/br] [tex=3.714x1.357]2NJfq7RPmYLOPqQkzGgdHEnsb4EXkSE4hIY4Oj3K2Ng=[/tex]
举一反三
- 在一个布袋中有 3 枚硬币, 分别用 H 、 T 、 F 表示, H的两面都是正面, T的两面 都是反面,而 F是一个一正一反的均匀硬币。随机选择一枚硬币并投郑两次,用 X 表示 所选择的硬币, [tex=2.357x1.214]S29qqUhous3fUkTsGmUnDA==[/tex] 表示两次投掷的结果, Z 表示两次投郑中出现正面的次数。求:[br][/br][tex=3.214x1.357]OKMrmzSVAOpg22CIE/ttWA==[/tex]
- 在一个布袋中有 3 枚硬币, 分别用 H 、 T 、 F 表示, H的两面都是正面, T的两面 都是反面,而 F是一个一正一反的均匀硬币。随机选择一枚硬币并投郑两次,用 X 表示 所选择的硬币, [tex=2.357x1.214]S29qqUhous3fUkTsGmUnDA==[/tex] 表示两次投掷的结果, Z 表示两次投郑中出现正面的次数。求:[br][/br] [tex=3.643x1.357]16TuaF36wj8O07j+CO0HYSwAktwl7GKyXMMsZfvduuM=[/tex]
- 盒子里有两枚偏畸硬币, 硬币 1 正面向上的概率为 p, 硬币 2 正面向上的概率 为 1-p, 0<p<05 。随机取一枚硬币并且连续投郑。用 [tex=4.357x1.357]rE7PZBB2NkpkdnoUfM9Qsg==[/tex] 表示所选择的硬币, [tex=6.286x1.214]VG3UP5DAurumUw6v5EFA72S1LF0AwNv+pPEpRwYARNE=[/tex] 表示每次投郑的结果(正面或反面)。[br][/br] 求 [tex=4.643x1.357]e8Dzs0dZ+jP1qkYTg2rdj7RQTyiUMpaf+OB1JsNDDGA=[/tex]
- 罐中有 [tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex] 个硬币,其中有 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 个是普通硬币(掷出正面与反面的概率各为 0.5)其余 [tex=2.071x1.143]ZbJdnQLnwX5YZ3gFo2ELzw==[/tex] 个硬币两面都是正面,从罐中随机取出一个硬币,把它连掷两次,记下结果,但不去查看它属于哪种硬币,如此重复 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次,若郑出 0 次、1 次、2 次正面的次数分别为 [tex=4.071x1.0]VNbjMB50WLPVEfzroMOD3EAJW9VIC6xJ58tIsm2hSqY=[/tex] 利用 (1) 矩法;(2) 极大似然法去估计参数 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 。
- 盒子里有两枚偏畸硬币, 硬币 1 正面向上的概率为 p, 硬币 2 正面向上的概率 为 1-p, 0<p<05 。随机取一枚硬币并且连续投郑。用 [tex=4.357x1.357]rE7PZBB2NkpkdnoUfM9Qsg==[/tex] 表示所选择的硬币, [tex=6.286x1.214]VG3UP5DAurumUw6v5EFA72S1LF0AwNv+pPEpRwYARNE=[/tex] 表示每次投郑的结果(正面或反面)。[br][/br] [tex=6.286x1.214]VG3UP5DAurumUw6v5EFA72S1LF0AwNv+pPEpRwYARNE=[/tex] 是否为平稳过程 ? 是否为马尔可夫过程 ?[br][/br][br][/br]