12个乒乓球中有9新3旧,第一次比赛取出3个,用完放回,第二次比赛又取出3个,求(1)第二次取出的3球中有2个新球的概率;(2)在第二次取出3球中有2个新球的前提下,第一次取出的3个球全是新球的概率.
举一反三
- 12个乒乓球中有9新3旧,第一次比赛取出3个,用完放回,第二次比赛又取出3个,求(1)第二次取出的3球中有2个新球的概率;(2)在第二次取出3球中有2个新球的前提下,第一次取出的3个球全是新球的概率.
- 12个乒乓球中有9新3旧,第一次比赛取出3个,用完放回,第二次比赛又取出3个,求(1)第二次取出的3球中有2个新球的概率;(2)在第二次取出3球中有2个新球的前提下,第一次取出的3个球全是新球的概率.
- 12 个乒乓球中有 9 个新的,3 个旧的,第一次比赛取出了 3 个,用完后放回去,第二次比赛又取出 3 个,求第二次取到的 3 个球中有 2 个新球的概率.
- 盒中有 12 个乒乓球,其中有 9 个是新的. 第一认比赛时从中任取 3 个,用后仍放回盒中,第二次比赛时再从盒中任取 3 个,求第二次取出的球都是新球的概率.又: 已知第二次取出的球都是新球,求第一次取到的都是新球的概率.
- 假设乒乓球在未使用前称为新球,使用后称为旧球。现在,袋中有 10 个乒乓球, 其中有 8 个新球. 第一次比赛时从袋中任取 2 个球作为比赛用球,比赛后把球放回袋中, 第二次比赛时再从袋中任取 2 个球作为比赛用球. 求:(1) 第二次比赛取出的球都是新球的概率 ;(2) 如果已知第二次比赛取出的球都是新球,求第一次比赛时取出的球也都是新球的概率