举一反三
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 均服从标准正态分布, 相关系数为 0.5 . 求 [tex=4.286x1.357]D1V7DWH95Ex3bNj8SWFP4w==[/tex] 及 [tex=3.857x1.357]HodyV7LmYNNyYZMvnTSTSA==[/tex].
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的数学期望均为 2, 方差分别为 1 和 4, 而相关系数为[tex=1.286x1.0]Xw4HtVBYfKWvhqczbZyg/g==[/tex], 试用切贝雪夫不等式估计[tex=6.0x1.357]U69z2Yptdp1lEiZCEkyxTM33i7x7A5WVdtjffTMilxg=[/tex]
- 设二维随机变量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合分布律如下表所示:[img=244x179]178bfe5bd8b0fd9.png[/img](1) 求关于[tex=2.643x1.286]V55zyFN5uPHuMMgjHwiVXw==[/tex]的边缘分布律;[br][/br](2)[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否相互独立?
- 假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?
内容
- 0
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从区间 [tex=2.286x1.357]t/28KdVrg5JGYKaENU0GEw==[/tex] 上的均匀分布, (1) 求 [tex=2.714x1.214]VfOl/4x2a1odUFLYGB1r5g==[/tex] 的密度函数; (2)[tex=4.071x1.357]t87+3Oz92Z7YepmRXJbOdQ==[/tex].[br][/br][br][/br]
- 1
假设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在圆域 [tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex] 上服从二维均匀分布。(1)求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数 [tex=1.571x1.0]7wwDFuycAIG1Sh4qLOA3bg==[/tex];(2)问 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?
- 2
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]独立,且[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从均值为 1 、标准差(均方差)为[tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex]的正态分布,而[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 服从标准正态分布. 试求随机变量[tex=5.429x1.143]huB4ZoJzEVd/0NhytOd1Sg==[/tex]的概率密度函数.
- 3
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从标准正态分布,则()[br][/br] 未知类型:{'options': ['[tex=2.357x1.143]xxJ3S1dOtnLMw5/RpS1f8w==[/tex]服从正态分布[br][/br]', '[tex=3.286x1.357]WIbEp60guAaoHnHeBM+JfQ==[/tex]服从[tex=1.071x1.429]637LVdgs6x2/Us8WxEQwHA==[/tex]分布[br][/br]', '[tex=1.143x1.214]FbrR8VT1iWz3n7iO5R8Afg==[/tex]\xa0和 [tex=1.214x1.214]BhrI4tb/5eWAfVoDjKkTQQ==[/tex]都服从[tex=1.071x1.429]637LVdgs6x2/Us8WxEQwHA==[/tex]分布[br][/br]', '[tex=1.571x2.5]N24g+vk8bIrlWObS8x7sg35s4S+K/2HnriDOQfqN8Qw=[/tex]服从 [tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex]分布'], 'type': 102}
- 4
已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从参数为[tex=0.643x1.0]L2Atb4d5eWga5JCvxFtwvQ==[/tex]的泊松分布,[tex=4.857x1.357]F4m+q5YLqz1CpMYzT+XifA==[/tex], 则[tex=2.429x1.357]mcPoV0l2+P69G4jqQuIxgA==[/tex] A: 3 B: 1 C: 2 D: 0