设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 均服从标准正态分布, 相关系数为 0.5 . 求 [tex=4.286x1.357]D1V7DWH95Ex3bNj8SWFP4w==[/tex] 及 [tex=3.857x1.357]HodyV7LmYNNyYZMvnTSTSA==[/tex].
举一反三
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的方差 [tex=4.214x1.357]jN6clytB9KJ2+Cm8MEFipg==[/tex],随机变量 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的方差 [tex=4.0x1.357]ngsXL9y1Fg53amE0pcENjw==[/tex],又 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数 [tex=3.571x1.214]xVCI3eQDkXhkzYqLtMmGIA==[/tex],求 [tex=3.857x1.357]D1V7DWH95Ex3bNj8SWFP4w==[/tex] 与 [tex=4.071x1.357]6PnkZxF5dtGxgjJyiDCR8g==[/tex]
- 设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]独立,且[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从均值为 1 、标准差(均方差)为[tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex]的正态分布,而[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 服从标准正态分布. 试求随机变量[tex=5.429x1.143]huB4ZoJzEVd/0NhytOd1Sg==[/tex]的概率密度函数.
- 设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]均服从标准正态分布,相关系数为[tex=1.286x1.0]+3HJ2X2NFgFnj1yDF8NAtw==[/tex]求[tex=4.286x1.357]cZZGC5wzE10qosHcF2OiUg==[/tex]及[tex=3.857x1.357]DBD1et6OC0eRmQ2TnpNhzg==[/tex][br][/br]
- 假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?