若[tex=1.929x1.357]V5fpmZb0R7HRGPlXabVmLw==[/tex]为代数扩张, [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]为完全域, 则[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]也为完全域.
举一反三
- 若[tex=1.929x1.357]V5fpmZb0R7HRGPlXabVmLw==[/tex]为有限生成扩张 ( 不必为代数扩张), [tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]为完全域, 问[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是否也为完全域?
- 若[tex=1.929x1.357]V5fpmZb0R7HRGPlXabVmLw==[/tex]为代数扩张 ( 不必为有限扩张 ), [tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]为完全域, 问[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]是否也为完全域?
- 设[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是特征为[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]的域 ([tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为素数 ), [tex=1.929x1.357]V5fpmZb0R7HRGPlXabVmLw==[/tex]为代数扩张. 求证: 对每个[tex=2.071x1.071]88JjbS/ST4twPrU3q/sleg==[/tex]均存在整数[tex=2.5x1.143]YZZshURst2jqsRRwueVWJA==[/tex], 使得[tex=1.5x1.286]57gGkTXQr6fhuXvt030lJ3CRc13u8l2WC/PxcknVM/U=[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上可分.
- 设域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]不是完全域且[tex=4.286x1.214]e9dgkRD4ubLrCzzjIX5OfeFJ1rfmgAh98WV2Rfi/BIM=[/tex]证明:[p=align:center][tex=8.0x1.5]8VpVp2U6VGixBpvDPO6wdFFdZ1Zh5NEQ2vbJpM7p7AI4fqr9DgYdhAg464wa/ehz[/tex]在域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上不可约的充要条件是,[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是不是[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]中任何元素的[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]次幂.
- 如图,[tex=3.143x1.286]REaUoNxha/GBn3DE8cgfDA==[/tex]是边长为4的正方形,[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]、[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]分别为[tex=1.571x1.286]cHJ4KDAad01mWuGaiQQpfA==[/tex]、[tex=1.571x1.286]hOo99m7YJCAnVf2cQGX8dQ==[/tex]的中点,则阴影部分的面积为[img=163x138]17e6c55620e728c.png[/img] A: 4 B: 5 C: 6 D: 7 E: 8