在 $R^3$ 中,与向量 $\alpha_1=(1,1,1)$,$\alpha_2=(1,2,1)$ 都正交的单位向量是( ).
A: $(-1,0,1)$
B: $\displaystyle\frac1{\sqrt{2}}(-1,0,1)$
C: $(1,0,-1)$
D: $\displaystyle\frac1{\sqrt{2}}(1,0,1)$
A: $(-1,0,1)$
B: $\displaystyle\frac1{\sqrt{2}}(-1,0,1)$
C: $(1,0,-1)$
D: $\displaystyle\frac1{\sqrt{2}}(1,0,1)$
举一反三
- 在R3中与向量α1=(1,1,1)T,α2=(1,2,1)T,都正交的单位向量是() A: 1/(-1,0,1)T B: (1,0,1)T C: (-1,0,1)T D: (1,0,-1)T
- 向量(1, 1, 1)与向量(1, -1, 1)的向量积 = A: (2, 0, -2) B: (1, 0, -1) C: (-2, 0, 2) D: (-1, 0, 1)
- \(已知曲线弧L:y=\sqrt{1-x^2}(0\le x\le 1).则\int_{L}xyds=(\,)\) A: \[1\] B: \[\frac{1}{2}\] C: \[\frac{1}{3}\] D: \[\frac{1}{4}\]
- For the integral $\int_0^{+\infty}\frac{dx}{(x^2+p^2)(x^2+q^2)}$, which of the following statements are CORRECT? A: $\frac{1}{q^2-p^2}[\frac{1}{p}-\frac{1}{q}]\frac{\pi}{2},p>0 \ q>0;$ B: $\frac{1}{q^2-p^2}[\frac{1}{q}+\frac{1}{p}]\frac{\pi}{2}, -p>0 \ -q>0;$ C: $\frac{1}{q^2-p^2}[\frac{1}{p}-\frac{1}{q}]\frac{\pi}{2}, p>0 \ -q>0;$ D: $\frac{1}{p^2-q^2}[\frac{1}{q}+\frac{1}{p}]\frac{\pi}{2}, -p>0 \ q>0.$
- 设(1 2 3 ) ' 表示行向量(1 2 3 )的转置。对于向量组A:a1=(1 2 0)',a2=(1 0 2) ', 下列哪个向量可以被向量组A线性表示? A: (1 1 1)' B: (1 1 0)' C: (0 1 -1)' D: (1 0 1)'