若[tex=1.643x1.286]G+YhXSa7jurfipYEGhOheA==[/tex]是连续函数且为奇函数,证明[tex=4.214x2.286]0fRlWbNJGvj5VdT3U3Vk0gsJ0wPKCSLHiIsl69Vu800=[/tex]是偶函数;若[tex=1.643x1.286]G+YhXSa7jurfipYEGhOheA==[/tex]是连续函数且为偶函数,证明[tex=4.214x2.286]0fRlWbNJGvj5VdT3U3Vk0gsJ0wPKCSLHiIsl69Vu800=[/tex]是奇函数。
举一反三
- 若[tex=1.643x1.286]G+YhXSa7jurfipYEGhOheA==[/tex]是连续函数且为奇函数,证明[tex=4.214x2.286]0fRlWbNJGvj5VdT3U3Vk0gsJ0wPKCSLHiIsl69Vu800=[/tex]是偶函数;若[tex=1.643x1.286]G+YhXSa7jurfipYEGhOheA==[/tex]是连续函数且为偶函数,证明[tex=4.214x2.286]0fRlWbNJGvj5VdT3U3Vk0gsJ0wPKCSLHiIsl69Vu800=[/tex]是奇函数。
- 设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 为连续函数, 求证:(1) 若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 为奇函数, 则 [tex=4.214x2.286]0fRlWbNJGvj5VdT3U3Vk0gsJ0wPKCSLHiIsl69Vu800=[/tex] 是偶函数 ;(2) 若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 为偶函数, 则 [tex=4.214x2.286]0fRlWbNJGvj5VdT3U3Vk0gsJ0wPKCSLHiIsl69Vu800=[/tex] 是奇函数;(3) 奇函数的所有原函数均为偶函数; 偶函数的原函数中只有一个奇函数.
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 证明:若函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是奇函数或偶函数,且 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.786x1.286]Fg5IUitkct+ESji8OI4WmA==[/tex] 连续,则函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=3.5x1.286]RlY7z3udff+GPCeq4Wqz1g==[/tex]也连续。
- 设函数f具有一阶连续导数,f''(0)存在,且f'(0)=0,f(0)=0,[tex=11.143x2.929]FgiJWgRQAKO6KUAKNMtpr42BveQYl/ToVviQ5cCtM9wcSY0QBIbGsihuelZ2Y0bAzYEbycD2Q2vfi4GC2Ijs1kB6/BRoIojNsaonEeVPYMMzs1ywITo1iMnLUJQZym3e[/tex].(1)确定a,使得g(x)处处连续;(2)对以上所确定的a,证明g(x)具有一阶连续导数.