(1) 叙述无界函数的定义;[br][/br](2) 证明:[tex=4.0x2.357]Skzfc0ZxjrbUnQ48HU5E0tXmPoDSwwji7Ikqu4Ix2eQ=[/tex]为[tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上的无界函数;[br][/br](3) 举出函数 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的例子,使[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为闭区间[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的无界函数。
举一反三
- (1) 叙述无界函数的定义;[br][/br](2) 证明: [tex=4.0x2.357]Skzfc0ZxjrbUnQ48HU5E0tXmPoDSwwji7Ikqu4Ix2eQ=[/tex]为 [tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex]上的无界函数;[br][/br](3) 举出函数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的例子,使[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]为闭区间 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]上的无界函数。
- (3)举出函数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的例子,使[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]为闭区间[tex=2.0x1.357]khGQOVqy3eZik4Tp7/+YjA==[/tex]上的无界函数。
- 设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为可导函数,求下列各函数的一阶导数:[br][/br](1) [tex=5.571x1.571]h7eWmw/XwEsBN2gkdn2cE9vd8Ve0MATjdsoFxMhCMLFenkwYbbLfP1dxu+eg/tIz[/tex](2)[tex=5.643x1.357]cUjh8uerl905q1pR0g7dPA==[/tex][br][/br]
- (2)证明[tex=4.0x2.357]nHHN4pLpj1G1uhQpyLUatqZAzncRTIM0yMsUEDziQow=[/tex]为[tex=2.286x1.357]ay6tf6ymcaVAoPQIbN6WLA==[/tex]上的无界函数
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=4.0x1.5]o0EugHY/eN16Hz+QLo+BIUiKWbXKuxVC0tSzj7xDCHi+kyFognSyy6B7Ak0bbIxH[/tex]中的有界开集,[tex=3.857x1.214]Tho5m+2VLMUARZGtb7om2ZtLvl+pxnfDP44ZAfSBunI=[/tex]为一致连续的函数,证明:(1)可将[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]连续地延拓到[tex=0.786x1.143]wPwG2U8kBJ7pwP99XAF/rg==[/tex]上;(2)[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上有界。$A$ 上有界.[br][/br]