正常人每毫升血液中白细胞数[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从正态分布[tex=6.286x1.571]ejoJA0x4q+uVA3WpaVuTcpyHHdL+aZpjaW1gYahaxds=[/tex], 现抽检 5 名正常人,求: 5 人白细胞数都在[tex=5.286x1.357]9YDfUFIL/OhGbxITSHPmbw==[/tex]之间的概率;
举一反三
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的泊松分布。求 [tex=5.286x1.357]t2WmSWvTpZdqSQbDpk4HSg==[/tex]
- 一本书排版后一校时出现错误处数 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从正态分布 [tex=5.071x1.357]Tbx8PgMlFtXAxw7CU0/DbQ==[/tex], 试求: 出现错误处数在 [tex=3.786x1.0]SYkNnnkvXIF4bygNQhH2TA==[/tex] 之间的概率。
- 已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的联合概率分布为[img=840x92]178f2e157cdbead.png[/img]试求:(1)[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布;(2) [tex=2.214x1.143]tkk4aXcDoKeg9ZsIAK+yrQ==[/tex]的概率分布;(3) [tex=6.857x2.429]RqGV9tRUT6gh1TsLo9YXgRs6mochCT0I/f5RwmC1X0k=[/tex]的数学期望.