举一反三
- 设矩阵[tex=10.286x3.929]r+tiAx6ClSaeP7cZbqpjmU2jA8OfocZwi1HjRH+Ylr2XvckDNXltPwV5JFJ+Ly07gOR43TRiiKsRQVHTf91QqbOE+NRimz/nYtjLvyaMLTEnfTdtd9wtRT5d840Dj9z+[/tex],矩阵[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]满足[tex=7.643x1.286]mdLdzaMkJ0bZ1Q+PvHfNXvayLD3A1ZlECG2+4G0qDxY=[/tex],试求矩阵[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]。
- 设随机变量 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 服从二项分布,已知 [tex=8.857x1.286]i2Z5Uf6DCEKk3kUuqFJqMBMPcT40TtxFiK2OLjQwcas=[/tex] , 求 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 的分布律
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,证明: “[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关”与“[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立”等价.
- 已知连续型随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的概率密度为[tex=11.286x2.429]U852yuhDf+y85IsGYXc4POR8uWvaHKELPrAqmR+nmZG8JwQvH0foTJhPAGSLnBQXqh5/UNFfVZeaD9Byq9v1KtCDtifjYmrT7J5EbhwNU4c=[/tex]求:(1)[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex];(2)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的分布函数[tex=2.071x1.286]QnT5Ukq2Ukk4CB2YYrq4eQ==[/tex];(3)[tex=5.429x1.286]gXKUDxSisNFST4SGeDeIwg==[/tex]。
- 口袋中有5个球,编号为1,2,3,4,5 . 从中任取3只,以[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]表示取出的3个球中的最大号码 .(1)试求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的分布列;(2)写出[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的分布函数,并作图 .
内容
- 0
设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个相互独立的随机变量,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]在[tex=2.929x1.286]kvrkODQf0L3CKREOEdSkuA==[/tex]上服从均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的概率密度为[tex=10.571x2.429]DRJq+C1mHjswrEZ8FtvX7HNGAPrBLJ6gzRGG2ilTN7MM55jZEydQmT0AUl0Qb5hAT5k9ols3J/KpgflWFdX4TQ==[/tex],求:(1)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合概率密度;(2)[tex=4.714x1.286]dbgFLPFxgdKKXnbc/gnthjs3iie6rgn/UEwrXH27vHI=[/tex] .
- 1
设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的概率密度为[tex=9.214x2.429]93cVZGWw3lMgVkyi6VSoKh50pCatLfwEhBI5Mcu8cetbI0pCEX/JZxnvKhEuybgm+iLMgPuF5EM2U4IiW21lBg==[/tex]设[tex=2.071x1.286]QnT5Ukq2Ukk4CB2YYrq4eQ==[/tex]是[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的分布函数,求随机变量[tex=4.429x1.286]lp9MWWLA00sQp0WbJ9dswA==[/tex]的密度函数。
- 2
某厂销售收入[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与利润[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的统计资料如表所示。[img=631x178]1790c8ce45dac14.png[/img]若[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]有线性关系,试求出[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]关于[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的线性回归方程。
- 3
设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的方差存在,证明:[tex=10.143x1.286]HG2ihwjcXTdzCTS/bC0QJsaC65j3BHkkW1/8B8OIxFg=[/tex]是[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关的充分和必要条件.
- 4
设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]是一个满足第一可数公理的空间,证明:[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]是Hausdorff空间当且仅当[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]中每一个收敛序列都只有一个极限点。[br][/br]