设∫f(x)dx=ln2x+C,则f(x)等于()
A: 1/2x
B: 1/2x+C
C: 1/x
D: 1/x+C
A: 1/2x
B: 1/2x+C
C: 1/x
D: 1/x+C
举一反三
- 不定积分[f′(x)/(1+[f(x)]2)]dx等于() A: ln|1+f(x)|f+c B: (1/2)1n|1+f(x)|+c C: arctanf(x)+c D: (1/2)arctanf(x)+c
- 不定积分[f′(x)/(1+[f(x)]2)]dx等于() A: ln|1+f(x)|f+c B: (1/2)1n|1+f2(x)|+c C: arctanf(x)+c D: (1/2)arctanf(x)+c
- 若\( \int {f(x)dx = {x^2} + C} \),则\( \int {xf(1 - {x^2})dx = } \)( ) A: \( 2{(1 - {x^2})^2} + C \) B: \( - {1 \over 2}{(1 - {x^2})^2} + C \) C: \( {1 \over 2}{(1 - {x^2})^2} + C \) D: \( - 2{(1 - {x^2})^2} + C \)
- 已知\( y = \ln (1 + {x^2}) \),则\( y' \)为( ). A: \( { { 2x} \over {1 + {x^2}}} \) B: \( {x \over {1 + {x^2}}} \) C: \( {1 \over {1 + {x^2}}} \) D: \( { { {x^2}} \over {1 + {x^2}}} \)
- 下列函数相等的是( )。 A: \( f(x) = \ln {x^2},g(x) = 2\ln x \) B: \( f(x) = x,g(x) = \sqrt { { x^2}} \) C: \( f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \( f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)