如图所示质点的谐振动曲线所对应的振动方程是:[img=226x143]1802f8f8a84b457.jpg[/img]
A: X=2cos(3t/4+π/4)(m)
B: X=2cos(pt/4+5p/4)(m)
C: X=2cos(pt -π/4)(m)
D: X=2cos(3pt /4-π/4)(m)
A: X=2cos(3t/4+π/4)(m)
B: X=2cos(pt/4+5p/4)(m)
C: X=2cos(pt -π/4)(m)
D: X=2cos(3pt /4-π/4)(m)
举一反三
- 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: [img=261x166]18032de3523df2c.png[/img] A: x=2cos(4πt/3+2π/3)cm B: x=2cos(2πt/3+2π/3)cm C: x=2cos(2πt/3-2π/3)cm D: x=2cos(4πt/3-2π/3)cm E: x=2cos(4πt/3-π/4)cm
- cos(x)*cos(x/2)*cos(x/4)*cos(x/8).cos(x/(2^(n-1))
- 将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
- 一个平面简谐波沿x轴负方向传播,波速u=10m/s。x=0处,质点振动曲线如下图,则该波的表达式为() A: s=2cos(πt/2+πx/20+π/2)m B: s=2cos(πt/2-πx/20-π/2)m C: s=2cos(πt/2-πx/20+π/2)m D: s=2cos(πt/2+πx/20-π/2)m
- 求不定积分[img=132x48]17da6537fc8dad6.png[/img]; ( ) A: -(4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) B: (4*(sin(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) C: (4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) D: (4*(cos(x/2)/2 + 2*cos(x/2)))/(17*exp(2*x))