如附图所示, 设半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的带电薄圆盘的电荷面密度为 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex],并以角速率[tex=0.643x0.786]B0PC2AKEHpSnHKwlNNx+FA==[/tex] 线通过盘心垂直盘面的轴转动, 求圆盘中心处的磁感强度.[img=162x140]17f6e8d30f9b6e4.png[/img]
举一反三
- 一半径为[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]的薄圆盘,放在磁感应强度为[tex=1.143x1.214]otH3qhQ+DHmjm/DzcI/j2Q==[/tex]的均匀磁场中,[tex=1.143x1.214]otH3qhQ+DHmjm/DzcI/j2Q==[/tex]的方向与盘平行,在圆盘表面上,电荷面密度为[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex],若圆盘以角速度[tex=0.643x0.786]B0PC2AKEHpSnHKwlNNx+FA==[/tex]绕通过盘心并垂直盘面的轴转动,求:[img=161x125]17a7ccc2757cfa6.png[/img]圆盘产生的磁矩;
- 一个塑料圆盘,半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex],电荷[tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex]均匀分布于表面,圆盘绕通过圆心垂直于盘面的轴转动,角速度为 [tex=0.643x0.786]B0PC2AKEHpSnHKwlNNx+FA==[/tex]。求圆盘中心处的磁感应强度。
- 真空中一个半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的均匀带电圆盘, 电荷面密度为 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex] 。求[tex=1.357x1.357]TWUgLpDrEXIKICMuiEQPjw==[/tex]在圆盘的轴线上距盘心 [tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 为[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]处的电势;[tex=1.214x1.357]vzdGmXlbw83hTiK2SebvEA==[/tex]根据场强与电势的梯度关系求出该点处的场强。
- 一半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的均匀带电圆盘,面电荷密度为[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]。设无穷远处为零电势参考点, 求圆盘中心点[tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex]处的电势。
- 如图所示,一扇形薄片,半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex],张角为 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex],其上均匀分布正电荷,电荷面密度为 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex], 薄片绕过角顶点 [tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 且垂直于薄片的轴转动,角速度为 [tex=0.643x0.786]0F0UV7TjacuZGzXhaEmetQ==[/tex]。 求 [tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex] 点的磁感强度。[img=648x197]179d076bfa8239a.png[/img]