设f(x),g(x),h(x),s(x)都是多项式,且对任意复数x都有f(x^5)+xg(x^5)+x^2h(x^5)=(x^4+x^3+x^2+x+1)s(x)成
这题目有些不明白,发完了吗
举一反三
- 设$f(x),g(x),h(x)$是三个实系数多项式,且$$f^{2}(x)=xg^{2}(x)+xh^{2}(x)$$则$f(x),g(x),h(x)$满足条件()。 A: $f(x)=g(x),f(x)\not=h(x)$; B: $f(x)=g(x)=h(x)=0$; C: $f(x)\not=g(x),g(x)\not=h(x)$; D: $f(x)\not=g(x),g(x)=h(x)$.
- 【单选题】已知f(x)=5,g(x 1 ,x 2 ,x 3 )=x 1 , 其中x,x 1 ,x 2 ,x 3 均为自然数,新函数h可递归的构造如下:h(0,x) = f(x), 且h(S(n), x) = g(h(n,x),n,x),请按递归式进行计算下列式子,正确的是_____。 A. h(1 ,x) = 5 B. h(2 ,x) = 5+x C. h(3 ,x) = 5+2x D. h(4 ,x) = 5+3x
- 求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
- 互素多项式的性质,若f(x)|g(x)h(x),且(f(x),g(x))=1,那可以推出什么? A: g(x)|h(x) B: h(x)|f(x)g(x) C: f(x)g(x)|h(x) D: f(x)|h(x)
- 互素多项式的性质,若f(x)|h(x),g(x)|h(x),且(f(x),g(x))=1,那可以推出什么? A: f(x)g(x)|h(x) B: h(x)|g(x) C: h(x)|g(x)f(x) D: g(x)|h(x)
内容
- 0
青书学堂: 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3 ,则 f的矩阵为 。
- 1
设f(x),g(x),h(x)是数域P上的一元多项式,若f(x)∣g(x)且f(x)∣h(x),则下列说法不正确的是 A: f(x)∣(g(x)+h(x)) B: f(x)∣g(x)h(x) C: g(x)∣h(x) D: f(x)∣(u(x)g(x)+v(x)h(x))(其中u(x),v(x)为数域P上的多项式)
- 2
下列关于整除的命题中,正确的是______。? 若f(x)|g(x)+h(x),则f(x)|g(x)或f(x)|h(x)|若f(x)|g(x)+h(x),且f(x)|g(x),则f(x)|h(x)|若f(x)|g(x)h(x),则f(x)|g(x)或f(x)|h(x)|若f(x)|g(x)h(x),且f(x)不整除g(x),则f(x)|h(x)
- 3
设f(x),g(x)和h(x)都是奇函数,下列函数中为偶函数的是 A: f(x)g(x)h(x) B: f(x)+g(x)+h(x) C: f(x)+g(x)h(x) D: f(x)[g(x)+h(x)]
- 4
若f(x)∣g(x)h(x)且(f(x),g(x))=1则()。 A: g(x)∣f(x) B: h(x)∣f(x) C: f(x)∣g(x) D: f(x)∣h(x)