设幂级数\(\sum\limits_{n = 0}^\infty { { a_n}} {x^n}\)与\(\sum\limits_{n = 1}^\infty { { b_n}{x^n}} \)的收敛半径分别为\( { { \sqrt 5 } \over 3}\)与\({1 \over 3}\),则幂级数\(\sum\limits_{n = 1}^\infty { { {a_n^2} \over {b_n^2}}} {x^n}\)的收敛半径为( )。
A: 5
B: \( { { \sqrt 5 } \over 3}\)
C: \({1 \over 3}\)
D: \({1 \over 5}\)
A: 5
B: \( { { \sqrt 5 } \over 3}\)
C: \({1 \over 3}\)
D: \({1 \over 5}\)
举一反三
- 下列级数中,收敛的是( ). A: \(<br/>\sum\limits_{n = 1}^\infty { { 1 \over n}} \) B: \(<br/>\sum\limits_{n = 1}^\infty { { 1 \over { { n^2}}}} \) C: \(<br/>\sum\limits_{n = 1}^\infty { { 1 \over {\sqrt n }}} \) D: \( \sum\limits_{n = 1}^\infty { { 1 \over {\root 3 \of { { n^2}} }}} \)
- 将\(f(x)=e^x\)展开成\((x-3)\)的幂级数为( )。 A: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) B: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) C: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\) D: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\)
- 将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
- 将函数\(f(x) = {e^x}\)展开成\(x\)的幂级数为( )。 A: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - \infty < x < + \infty )\) B: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - \infty < x < + \infty )\) C: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - 1 < x < 1)\) D: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - 1 < x < 1)\)
- 将\(f(x) = {1 \over {1 + {x^2}}}\)展开成\(x\)的幂级数为( )。 A: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - \infty < x < + \infty )\) B: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1< x < 1)\) C: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\) D: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\)