A: \(
\sum\limits_{n = 1}^\infty { { 1 \over n}} \)
B: \(
\sum\limits_{n = 1}^\infty { { 1 \over { { n^2}}}} \)
C: \(
\sum\limits_{n = 1}^\infty { { 1 \over {\sqrt n }}} \)
D: \( \sum\limits_{n = 1}^\infty { { 1 \over {\root 3 \of { { n^2}} }}} \)
举一反三
- 设幂级数\(\sum\limits_{n = 0}^\infty { { a_n}} {x^n}\)与\(\sum\limits_{n = 1}^\infty { { b_n}{x^n}} \)的收敛半径分别为\( { { \sqrt 5 } \over 3}\)与\({1 \over 3}\),则幂级数\(\sum\limits_{n = 1}^\infty { { {a_n^2} \over {b_n^2}}} {x^n}\)的收敛半径为( )。 A: 5 B: \( { { \sqrt 5 } \over 3}\) C: \({1 \over 3}\) D: \({1 \over 5}\)
- 将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
- 设级数$\sum\limits_{n=1}^\infty u_n$ 收敛,则下列级数收敛的是() A: $\sum\limits_{n=1}^\infty \left(u_n+1\right)$ B: $\sum\limits_{n=1}^\infty u_{2n}$ C: $\sum\limits_{n=1}^\infty u_{n+1}$ D: $\sum\limits_{n=1}^\infty u_{2n+1}$
- 将\(f(x)=e^x\)展开成\((x-3)\)的幂级数为( )。 A: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) B: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) C: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\) D: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\)
- 将函数\(f(x) = {e^x}\)展开成\(x\)的幂级数为( )。 A: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - \infty < x < + \infty )\) B: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - \infty < x < + \infty )\) C: \({e^x} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over {n!}}} ( - 1 < x < 1)\) D: \({e^x} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n} { { {x^n}} \over {n!}}} ( - 1 < x < 1)\)
内容
- 0
将\(f(x) = {1 \over {1 + {x^2}}}\)展开成\(x\)的幂级数为( )。 A: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - \infty < x < + \infty )\) B: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1< x < 1)\) C: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\) D: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\)
- 1
\( \lim \limits_{n \to \infty } { { n!} \over { { n^n}}} = \)______ 。
- 2
\(\lim \limits_{n \to \infty } { { {\rm{3}}{n^2}{\rm{ + 8}}} \over { { n^2} - n}} = \) .______
- 3
${X_1},{X_2},...,{X_n}$是来自均匀分布X~U(-a,a)的样本,用矩估计法估计参数a为() A: ${(\frac{3}{n}\sum\limits_{k = 1}^n {x_k^2} )^{\frac{1}{2}}}$ B: ${(\frac{2}{n}\sum\limits_{k = 1}^n {x_k^2} )^{\frac{1}{2}}}$ C: ${(\frac{3}{n}\sum\limits_{k = 1}^n {x_k} )^{\frac{1}{2}}}$ D: ${(\frac{2}{n}\sum\limits_{k = 1}^n {x_k} )^{\frac{1}{2}}}$
- 4
(2). 根据最小二乘法的思想,拟合直线回归方程是使( )。 A: \( \min\sum\limits_{i=1}^n {\vert y_i -\hat {y}\vert }<br/>\) B: \( \min\sum\limits_{i=1}^n {(y_i -\bar {y})^2} \) C: \( \min\sum\limits_{i=1}^n {(\hat {y}_i -\bar {y})^2}<br/>\) D: \( \min\sum\limits_{i=1}^n {(y_i -\hat {y}_i )^2} \)