• 2022-06-04
    设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群,试证[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是幂零群当且仅当[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为其[tex=2.571x1.214]RsM5CifpF+POhNWiEVvU42nb/ga3aKf8w307AuBCqQ0=[/tex]子群的 直积。
  • 证明:因为[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]群是幂零群,所以当[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为其[tex=2.571x1.214]RsM5CifpF+POhNWiEVvU42nb/ga3aKf8w307AuBCqQ0=[/tex]子群的直积时,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是幂零的,反之,设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是幂零的,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的每个[tex=2.571x1.214]RsM5CifpF+POhNWiEVvU42nb/ga3aKf8w307AuBCqQ0=[/tex]子群都是正规的。[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为其[tex=2.571x1.214]RsM5CifpF+POhNWiEVvU42nb/ga3aKf8w307AuBCqQ0=[/tex]子群的直积。

    内容

    • 0

      证明可解群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有合成序列当且仅当[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群。

    • 1

       设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的任何真子群都是循环群,试问[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]一定是循环群吗?

    • 2

      设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶群且其不同的子群有不同的阶,试证:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是循环群。

    • 3

      设[tex=2.0x1.214]h5BeVqT5Z1GL62PdxuPBZQ==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的两个子群。证明: 当且仅当 [tex=3.071x1.071]3xgDjzfwjLudPzqGGkG7+w==[/tex] 或 [tex=3.071x1.071]5t6JH772shJGUim0IYHIDQ==[/tex]时,[tex=2.857x1.0]urJhYYDTzgVgGHegtUiqcg==[/tex]是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的子群。利用此结论证明: 群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 不能被它的两个真子群所覆盖。[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 能被它的三个真子群所覆盖吗? 

    • 4

      [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是群,[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是循环子群且在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中正规,则 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 的子群在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中都正规 .