设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群,试证[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是幂零群当且仅当[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为其[tex=2.571x1.214]RsM5CifpF+POhNWiEVvU42nb/ga3aKf8w307AuBCqQ0=[/tex]子群的 直积。
举一反三
- 设[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个子群,证明:[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的特征子群,当且仅当对[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的每个自同构[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]都是[tex=3.786x1.357]/hUAIv2XJLX3YXBqW5nP/A==[/tex].
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个群,试证:当且仅当[tex=3.071x1.357]lhn0XHWkDQjpgStNKz1WNg==[/tex]时,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]上的伴随作用可递。
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个群,试证:当且仅当[tex=4.571x1.357]Cfp84m7VnW4dk+f1tg/L9w==[/tex]时,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]上的伴随作用有效。
- 设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有有限个子群,证明[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]必为有限群。
- 证明: 如果有限群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的每一个 Sylow 子群都是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群, 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是它 的 Sylow 子群的直积.