∫(1/x x/2)dx
11/6
举一反三
- ∫(1/x x/2)dx
- 下列积分中()不是广义积分。 A: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) B: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) C: \( \int_0^1 { { 1 \over { { x^2}}}dx} \) D: \( \int_0^1 { { 1 \over { { x^2} - 4}}dx} \)
- 下列广义积分发散的是( )。 A: \( \int_0^{ + \infty } { { e^{ - x}}dx} \) B: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) C: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) D: \( \int_0^1 { { 1 \over {\sqrt {1 - x} }}dx} \)
- 下列四个积分中,()是广义积分。 A: \( \int_0^2 { { 1 \over { { {(3 - x)}^2}}}dx} \) B: \( \int_0^6 { { {(x - 4)}^{ - {2 \over 3}}}dx} \) C: \( \int_0^1 { { 1 \over {1 + {x^2}}}dx} \) D: \( \int_1^2 { { 1 \over { { x^2}}}dx} \)
- 由\( y = {x^2} - 1,\;y = 0 \)围成的平面图形面积可表示为( )。 A: \( \int_{ - 1}^1 {\left( { - {x^2} + 1} \right)} dx \) B: \( \int_{ - 1}^1 {\left( { { x^2} - 1} \right)} dx \) C: \( \int_0^1 {\left( { - {x^2} + 1} \right)} dx \) D: \( \int_0^1 {\left( { { x^2} - 1} \right)} dx \)
内容
- 0
\( d(\arcsin x) \)=( ). A: \( {1 \over {\sqrt {1 - {x^2}} }}dx \) B: \( - {1 \over {\sqrt {1 - {x^2}} }}dx \) C: 0 D: 1
- 1
若\( \int {f(x)dx = {x^2} + C} \),则\( \int {xf(1 - {x^2})dx = } \)( ) A: \( 2{(1 - {x^2})^2} + C \) B: \( - {1 \over 2}{(1 - {x^2})^2} + C \) C: \( {1 \over 2}{(1 - {x^2})^2} + C \) D: \( - 2{(1 - {x^2})^2} + C \)
- 2
函数 $y=\ln \sqrt{x}$的微分为 A: $\frac{1}{2}\ln x dx $ B: $\frac{1}{2}dx$ C: $\frac{1}{2x}dx$ D: $\ln x dx$
- 3
曲线y=x(x—1)(2—x)与x轴所围成的图形面积可表示为( ) A: —∫02x(x一1)(2一x)dx B: ∫02x(x一1)(2一x)dx一x(x一1)(2一x)dx C: —∫01x(x一1)(2一x)dx+∫122x(x一1)(2一x)dx D: ∫02x(x一1)(2一x)dx
- 4
设f(x)=(1/(1+x^2))+x^3∫(0到1)f(x)dx,求∫(0到1)f(x)dx