无向图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的边数[tex=3.643x1.214]mO36Wm4FZIPAIlSBY34nPg==[/tex]个 4 度顶点,4 个 3 度顶点,其余顶点的度数均小于3.问 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]至 少有几个顶点.
举一反三
- 设 9 阶无向图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中,每个顶点的度数不是 5 就是 6, 证明 : [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中至少有 5 个 6 度顶点或至 少有 6 个5 度顶点.
- 已知无向图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中顶点数 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]与边数 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 相等, 2 度与 3 度顶点各 2 个,其余顶点均为悬挂顶 点,试求 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的边数 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex].
- 已知无向树 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 中,有 3 个 3 度顶点,2个 4 度顶点,其余的顶点均为树叶,求 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的树叶数.
- 证明:若 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是简单图,并且最多有一个 3 度顶点,则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 包含 [tex=1.357x1.214]EIN5AiZ59vmZ5JCP0wScx//qLmLytHexB/ZIuIU+wNY=[/tex] 的一 个剖分图。
- 设无向树 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 中,有 2 个 2 度顶点,2个 3 度顶点, 1 个 4 度顶点,其余的顶点均为树叶.试求 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的阶数[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 、边数 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 树叶数 [tex=0.643x0.929]YuOqSABRkEhsmJRJP6gRug==[/tex]