举一反三
- 过原点作曲线 [tex=3.071x1.214]MBM6FkRKhubflZJqDSdnSQ==[/tex] 的切线, 求由切线, 曲线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围平面图形, 分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴和 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴 旋转所得旋转体的体积.
- 过[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]轴分别作动平面,夹角[tex=0.643x0.786]SPoVA3bJlgfP9Ek9O4AbuA==[/tex]是常数,求交线的轨迹方程,并且证明它是一个锥面。
- 求曲面 [tex=5.143x2.143]7/JB5g+fIDF7GMtFCzHJQqx8XOnzSpzwzUU8KNgqtc0=[/tex] 与平面 [tex=2.357x1.286]QMp35dnE+nN9jbCZRVoSkw==[/tex] 的交线在 [tex=2.357x1.286]DbxZR1Yb806Oy0xU84fgow==[/tex] 处的切线与 [tex=1.643x1.286]AVuPUFr2Epxn4fbMHqhCYg==[/tex] 轴的交角.
- 求过定点[tex=3.071x1.357]la0wJMlHnkm5QolDdjyrzg==[/tex] 且在[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴和[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴的截距分别是[tex=2.429x1.214]if8LlGdz9TZkR2mvx0YYVg==[/tex] 和[tex=2.286x1.214]7pAyafSF/tzirY6P4jmK6Q==[/tex]的平面方程.
- 求曲线[tex=2.786x1.357]Efksyl2nsVFjZIt05jVcHg==[/tex]与直线[tex=4.0x1.214]An54X9kuw9HgGkjH0a2Czw==[/tex]和[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的平面图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴和[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴旋转而得的旋转体体积;
内容
- 0
试在 [tex=2.143x1.286]d9EaY6XTsJOJE9+ehLehFg==[/tex] 内求一点,使过该点的直线平分由曲线 [tex=2.214x1.214]+uhjmb2E5xVh5Jr8m9fmgA==[/tex] 与直线 [tex=2.429x1.0]CMo0rF5qZtcVHoxL36R95Q==[/tex] 及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴, [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴围成的平面图形.
- 1
求由抛物线 [tex=3.571x1.429]x2ulPC9h41k0fVEnCwicBQ==[/tex] 与直线 [tex=2.429x1.0]iCWMESxH27wos2YIzODARQ==[/tex] 以及 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴在第一象限内围成的平面图形分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴和 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴旋转一周而成的旋转体的体积.
- 2
试求通过两个平面[tex=10.286x1.214]Dff6SiE0KqWgJB1sUO/q9eV1IcXFY5YbtwPKtjNM+bQ=[/tex]与 [tex=9.786x1.214]M1aKb9YRUdbHlo/yNlQM9SbxRpDQEa7OH5wJegOCTOo=[/tex]的交线,并满足与[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴平行的平面方程.
- 3
已知两个正数 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 之和为 8 ,若要使两数 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 的立方和最小,则 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 各应等于多少?
- 4
分别写出空间中绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴及[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴旋转的变换公式.