证明 [tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex] 是唯一的非交换[tex=0.5x1.0]BhZ+18hz9Lz5rDhFQ34M8A==[/tex] 阶群。
举一反三
- 设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的阶为[tex=0.5x1.0]BhZ+18hz9Lz5rDhFQ34M8A==[/tex],试证[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]或为[tex=0.5x1.0]BhZ+18hz9Lz5rDhFQ34M8A==[/tex]阶循环群或与[tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex]同构。
- 找出三次对称群[tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex]的一切子群. (注意,要求证明你所找出的子群已经 穷尽了[tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex]的一切子群.)
- 画出 3 元对称群[tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex]的子群格.
- 证明: 若 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 为非交换群,则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中至少含有 6 个元素,从而说明 [tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex] 是含有元素个数最少的不可交换群。
- 试证: 对称群[tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex]和[tex=1.0x1.214]VlaXkNO7I0w+AwTlQkUDyA==[/tex]是可解群, 但不是幂零群.