求函数[tex=8.357x1.571]sF1IMMh1PXbi/dl34HgxjtcG3ajGVCGPfq+Kv62e0x2kkh7ZZosnS90HvEo+Gdey[/tex]的单调区间以及函数的极值。
举一反三
- 【简答题】若函数 f ( x ) = ax 2 + 2 x - ln x 在 x = 1 处取得极值. (1) 求 a 的值; (2) 求函数 f ( x ) 的单调区间及极值.
- 求下列函数的单调区间、极值点和极值:(1)[tex=5.786x1.429]Xm05iQpjFRQdMYAxm+jG+zwiUFXX4xeKzSwAMWlGbEM=[/tex](2)[tex=3.5x1.214]tpMMnmsx8LGYaN6bnbpqKOAOTE+7uSs6mak76hnmsSQ=[/tex]
- 已知函数[tex=6.786x2.357]zJ0fiAUmkK9JgcJtlOlNv9zhiYp0GUhvvG3qP32SZRWN009W6ac/joAgnZe+2LR0[/tex],求(1) 函数单调区间,函数极值;(2) 函数图形的凹凸区间,函数图形的拐点。
- 已知函数f(x)=x3-ax+b在区间在x=2处取得极值-8(1)求函数y=f(x)的解析式;(2)求函数y=f(x)的单调区间.(3)当x∈[-3,3]时,求y=f(x)的最值域.
- 已知函数[tex=5.429x2.357]VUCuHsLODCrYlIkQNU33mjuRaj6UECx5ucDf79cnIAE=[/tex],求(1)函数的增减区间及极值;(2)函数图形的凹凸区间及拐点;(3)函数图形的渐近线。