设[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]为模[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]整数加群[tex=12.357x1.357]xFAd81z0896tbBzeqeuzTKasYw/r13pj8cwjq+FvZoxCoOTYSCEwlwumxMnb6QM+kARP5rnhkiGB5Eh8At1ViHHgyUDDepZlnSNOTvJj+2g=[/tex]验证 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为同态映射.说明[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]是否为单同态和满同态.
举一反三
- 设[tex=12.0x1.214]gB572wDdkq5QkAZpiB2UYUG2PADvmOQkLtNlHBArSsKeuruKm61TTLNN8s2UAtO8uQoojAgRjxlab+eqpFHpAw==[/tex]是代数系统,[tex=0.286x1.0]IMySrcZruZc70q4DNs3Nbg==[/tex]为普通乘法. 下面哪个函数[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是 [tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex] 到 [tex=1.0x1.214]++ZnQ9Yy0yDRqmUwKWQxMg==[/tex]的同态? 如果[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是同态,指出[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是否为单同态、满同态和同构,并求出[tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex] 在[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 下的同态像;如果不是,说明理由.[tex=12.071x1.357]WIRneRBVZv1p+7CSbwxTEFkeb5CbQRv+C6QZmvP/gftfcFztp7RSXqHTBcBP/sps9WJpQj6P2xZ7IEjCj6fiNlbBmbhQCHZ2+D8uE4dM7k4=[/tex]
- 设[tex=12.0x1.214]gB572wDdkq5QkAZpiB2UYUG2PADvmOQkLtNlHBArSsKeuruKm61TTLNN8s2UAtO8uQoojAgRjxlab+eqpFHpAw==[/tex]是代数系统,[tex=0.286x1.0]IMySrcZruZc70q4DNs3Nbg==[/tex]为普通乘法. 下面哪个函数[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是 [tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex] 到 [tex=1.0x1.214]++ZnQ9Yy0yDRqmUwKWQxMg==[/tex]的同态? 如果[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是同态,指出[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是否为单同态、满同态和同构,并求出[tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex] 在[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 下的同态像;如果不是,说明理由.[br][/br][tex=10.5x1.357]WIRneRBVZv1p+7CSbwxTEFkeb5CbQRv+C6QZmvP/gfvqRR6sFF0Q7NH40JIxSoF26z1SwGUzTWNFSwX9UHOUEz4I/rOAuRt2RzbdWcdxo0I=[/tex]
- 设[tex=12.0x1.214]gB572wDdkq5QkAZpiB2UYUG2PADvmOQkLtNlHBArSsKeuruKm61TTLNN8s2UAtO8uQoojAgRjxlab+eqpFHpAw==[/tex]是代数系统,[tex=0.286x1.0]IMySrcZruZc70q4DNs3Nbg==[/tex]为普通乘法. 下面哪个函数[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是 [tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex] 到 [tex=1.0x1.214]++ZnQ9Yy0yDRqmUwKWQxMg==[/tex]的同态? 如果[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是同态,指出[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是否为单同态、满同态和同构,并求出[tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex] 在[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 下的同态像;如果不是,说明理由.[br][/br][tex=11.0x1.357]WIRneRBVZv1p+7CSbwxTEFkeb5CbQRv+C6QZmvP/gfsPi488ZEjWiLMcLk9dE8dHcRbFOnAN2aeIId0tAp7UYe+8FkCgp+IJ1ogMWWb9PV8=[/tex]
- 对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。
- 秩为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 元实二次型 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 和 [tex=1.286x1.214]XLphJf0SvM0CmzwYL0VxCA==[/tex] 合同, 则 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 的正惯性指数等于[input=type:blank,size:6][/input]