• 2022-06-04
    证明   设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元 [tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex]的环, 则映射[p=align:center][tex=5.143x1.214]4huI4vPuOC5DwSwh9v+pqmZ8zIR4uMpqJJGCJdNZD5284UHYZUBluqcDPeiVBFsU[/tex][p=align:center][tex=3.857x0.786]xjKJOk7jgWMso5Sqhr+k7m3CrOAppVSxOnlWEawUee8=[/tex]是环 [tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 到 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同态.
  • 证明   对任意的[tex=3.571x1.214]hLqwQg4/UdWLdssA3l3PVwL6UyvubfjEIGZsCWht1IQ=[/tex] 有[p=align:center][tex=19.0x3.071]rZM5/OPAdr7aX+kNl9iwpNyziUV72n/DKi5903IRmSjkk99UDQBYsxgL4o3EU8TME0oEzyk15ZlnNoBWtHlO53C0v5FfHdaQlNKbeNxitf8V4NHD6PV7FKu2s9rT7FwpEd19UE/AxZE8vbdnXzWBKlX9UqibGah+MZ84j6mU/Hc=[/tex]所以 [tex=0.643x1.214]4ssBDc1re7hhNB3dpzYmRg==[/tex]是环[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 到环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的同态.

    举一反三

    内容

    • 0

      设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个有单位元的环,[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中的单位(即可逆元).证明:若有二互素整数[tex=1.929x1.0]+MkgvJhrh9DSU9I+bn6v4w==[/tex]使[p=align:center][tex=6.286x1.214]heRFm+iYOVdYaQJun1eOIrMHsUgW8o1KE1j3nQoyuE0=[/tex]则必[tex=1.786x1.0]e6yz2KDSejyMapjVGIIQDA==[/tex].

    • 1

      设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同态, 证明:[tex=2.929x1.357]7sm0+A17+tx/lVOuO5S85F70wS+QwHOEHbE76/O5U/A=[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想.

    • 2

      设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为环, [tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的一个幂等元. 又令[p=align:center] [tex=20.143x1.357]1nNx0v0xahUov8iOMsbIJSTePpYEVwplkGBgTsS4c8sqIb+EnuG7ytbM1JlbstfDj0yZgartECCb5ywUL0GEWw==[/tex][p=align:center][tex=16.357x1.357]K74PCw+F0FdcOYfSdPHPtNBUkPbvTYXg6JylocAerDNeaw7pzXoIr6yj8NWIxwCw[/tex]([tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]不一定有单位元)证明:[tex=5.714x1.357]Z3oibzrlRhHqic0yqSPhvQ==[/tex]与[tex=3.786x1.357]maY8sld12/N7audyO7jvLA==[/tex]都是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的子环,且后二者还是零乘环.

    • 3

      设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构, 证明: [tex=1.571x1.429]WwcGTNxNgqKGUcObs50zWg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构. 

    • 4

      设[tex=2.786x1.357]FjXX3zhvxUYhb/kCMCOvZw==[/tex] 是一个加群. 定义 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的乘法运算为[p=align:center][tex=8.929x1.214]mwVSR6rB8ETCmgrBOZBfKC4aHESn61kUbnYwMS+t5bgAmPHK5UFN6E/t4QuDSXF/[/tex]证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 关于加法和乘法构成一个环.