设连续函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在闭区间 [tex=2.0x1.357]iavJqAznijPyoXL3RTXYGA==[/tex] 上单调减少,[tex=9.571x2.643]nvrFVxX1j11ULW4ha/NmQon1wTFHwPAcmPc86vSBZ6Gf7ayM4BEDThfV3V+irOD9[/tex] 试证 [tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex] 在闭区间 [tex=2.0x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex] 上单调减少。
举一反三
- 证明:若函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在区间[tex=2.0x1.357]uQo0Qwms4Bgi6pleNWBbfw==[/tex],[tex=1.929x1.357]hp45PQvrPvS7e7qgE3Pr1A==[/tex]上单调增加(或单调减少 ),则[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 区间[tex=2.0x1.357]lkx3C2xRSVDjN5Vayvd/5g==[/tex]上单调增加(或单调减少).
- 证明: 若闭区间 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的单调有界函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 能取到 [tex=1.857x1.357]+oWS0hM0HogLU9xbRXppWQ==[/tex] 和 [tex=1.714x1.357]6GTYhzmnTgdXYb7xz1/D/Q==[/tex] 之间的一切值,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的连续函数.
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是连续函数,[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的原函数,则[tex=1.786x1.357]1FWWLFo8m6jXX+dniaRAVQ==[/tex] 未知类型:{'options': ['当[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是奇函数时,[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]必是偶函数', '当[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是偶函数时,[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]必是奇函数', '当[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是周期函数时,[tex=2.0x1.357]0HAbWAzBKLqCC5TQ0HSuJQ==[/tex]必是周期函数', '当[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是单调增函数时,[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]必是单调增函数'], 'type': 102}
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]连续,[tex=7.214x2.643]2ZJQOGzPP+WXkSjEhj0ot/8XbWpx0nNxKCDDSnV56LI=[/tex],试证:(1) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是奇函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是偶函数;(2) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是偶函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是奇函数.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续, 且 [tex=6.429x2.857]v8dYDmjeifbMxF1xMKtGGOROme7UMSqlNsxt5NS/Crc=[/tex], 证明 [tex=1.857x1.357]sBGRsVJ0Y3fPPi7d5ztPoA==[/tex] 在 [tex=2.0x1.357]iavJqAznijPyoXL3RTXYGA==[/tex] 上恒为 0 .