设某交叉路口在t分钟内通过的汽车数服从参数与t成正比的泊松分布,已知在1分钟内没有汽车通过的概率为0.2,求在2分钟内最多有1辆汽车通过的概率.
举一反三
- 设在时间 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex](分钟)内,通过某交叉路口的汽车数服从参数与 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 成正比的泊松分布,已知在 1 分钟内没有汽车通过的概率为 0. 2,求在 2 分钟内最多一辆汽车通过的概率.
- 设在时间[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex](分钟)内,通过某交叉路口的汽车数服从参数与[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]成正比的泊松分布,已知在 1 分钟内没有汽车通过的概率为 0.2 ,求在 2 分钟内有多于 1 辆汽车通过的概率.
- 设某时间段内通过一路口的汽车流量服从泊松分布,已知该时段内没有汽车通过的概率为[img=14x41]17e44867ce847c7.png[/img],则参数λ=____。
- 设某时间段内通过一路口的汽车流量服从泊松分布,已知该时段内没有汽车通过的概率为,则参数λ=____。https://p.ananas.chaoxing.com/star3/origin/dbbeff1fdf7c8b3410db619a2073e5d8.png
- 设某时间段内通过一路口的汽车流量满足泊松分布,已知该时间段内没有汽车通过的概率为0.05,则 这段时间内至少有两辆汽车通过的概率最接近于