A: $\{a_n\}=7*(-9)^n+4*6^n$
B: $\{a_n\}=7*9^n-4*6^n$
C: $\{a_n\}=7*9^n-4*(-6)^n$
D: $\{a_n\}=7*(-9)^n-4*6^n$
E: $\{a_n\}=7*(-9)^n+4*(-6)^n$
F: $\{a_n\}=7*(-9)^n-4*(-6)^n$
举一反三
- 计算下列序列的N点DFT。(1)x(n)=1(2)x(n)=δ(n)(3)x(n)=δ(n一n0),0<n0<N(4)x(n)=Rm(n),0<m<N(7)x(n)=ejω0nRN(n)(8)x(n)=sin(ω0n)RN(n)(9)x(n)=cos(ω0n)RN(n)(10)x(n)=nRN(n)
- (8). 将一枚骰子重复掷 \(n\) 次,求掷出的最大点数为5点的概率为( )。 A: \(\frac{5^4-4^n}{6^n} \) B: \( \frac{n^5-n^4}{6^n}\) C: \(\frac{5^n-4^n}{6^n}\) D: \( \frac{5^4-3^n}{6^n} \)
- 计算并输出9的阶乘。 jx=1 n=1 do while jx=jx*n enddo 9!=’+’1*2*3*4*5*6*7*8*9=’+’
- 设$\{a_n\}$是正项数列,则下列选项中正确的是 A: 若$a_n>a_{n+1}$,则$\sum_{n=1}^{\infty}(-1)^{n-1}a_n$收敛 B: 若$\sum_{n=1}^{\infty}(-1)^{n-1}a_n$收敛,则$a_n>a_{n+1}$ C: 若$\sum_{n=1}^{\infty}a_n$收敛,则存在常数$p>1$,使得$\lim_{n\to\infty}n^pa_n$存在 D: 若存在常数$p>1$,使得$\lim_{n\to\infty}n^pa_n$存在,则$\sum_{n=1}^{\infty}a_n$收敛
- 设幂级数\(\sum\limits_{n = 0}^\infty { { a_n}} {x^n}\)与\(\sum\limits_{n = 1}^\infty { { b_n}{x^n}} \)的收敛半径分别为\( { { \sqrt 5 } \over 3}\)与\({1 \over 3}\),则幂级数\(\sum\limits_{n = 1}^\infty { { {a_n^2} \over {b_n^2}}} {x^n}\)的收敛半径为( )。 A: 5 B: \( { { \sqrt 5 } \over 3}\) C: \({1 \over 3}\) D: \({1 \over 5}\)
内容
- 0
求数列[img=164x46]1803072d931eae3.png[/img]的通项公式 A: RSolve[{a[n+1]==(2a[n]+3)/(a[n]+4),a[0]==0},a[n],n] B: RSolve[a[n+1]==(2a[n]+3)/(a[n]+4),a[0]==0,a[n],n] C: RSolve[{a[n+1]==(2a[n]+3)/(a[n]+4),a[0]==0},a[n]] D: RSolve[{a_(n+1)==(2a_n+3)/(a_n+4),a_0==0},a_n,n]
- 1
下列数组声明语句中,不正确的是_________。 A: Dim a(9) As Single = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} B: Dim a() = {1, 2, 3, 4, 5, 6, 10} C: Dim a( ,) As Single = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}} D: Dim a() As Single = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} E: Dim n As Integer=10Dim a(n) As Single
- 2
以下程序输出结果为( )int n = 10;while(n>7){ n--; printf("%d ",n);} A: 10 9 8 B: 9 8 7 C: 10 9 8 7 D: 9 8 7 6
- 3
有以下程序段: int n=10; while(n>7) { n--; printf("%d\n",n); } 程序段的输出结果是 A: 10 9 8 B: 9 8 7 C: 10<br> 9 8 7 D: 9 8 7 6
- 4
设X~B(n,P),且E(X)=4,D(X)=2,则n=( ). A: 7 B: 8 C: 9 D: 10