在长为[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的线段上任取两点,求两点距离的期望和方差.
举一反三
- 在长为 [tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex] 的线段上任取两点,试求两点间距离的期望及方差.
- 在长为[tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex]的线段上任意选取两点,求两点间距离的数学期望及标准差.
- 在单位长的线段上任取两个点[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]和[tex=0.929x1.286]9yLabwWeyn0cMD+fIBc3Rg==[/tex],求线段[tex=2.0x1.286]NPsMuqvzeObfQAoAOqtFRQ==[/tex]长度的数学期望。
- 直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 通过点 [tex=4.714x1.357]qHVZtWTfd69zTSE/gRu6Og==[/tex] 和点 [tex=4.714x1.357]GGVcZXncueqAJgGEDfvLzg==[/tex], 求点 [tex=5.5x1.357]NYnZYc10XybaHDDFZbHnRrz38bClL5A0XqgSStUiVR0=[/tex] 到直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的距离 [tex=0.571x1.0]QDHYLzpRIwhOrWBqGonCgg==[/tex].
- 曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 是一条平面曲线,其上任意一点 [tex=6.143x1.357]yuQVB4s2ZaTxXH98rOGLUw==[/tex] 到坐标原点的距离恒等于曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 在该 点切线在[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴上的截距,且 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 经过点 [tex=3.786x2.786]5ipjI0CM2ngAbGND1jDprBsSv0zYtRNfPJ0h3rsEYYo=[/tex](1) 试求曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]的方程;(2) 求[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 位于第一象限部分的一条切线,使该切线与 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 以及两坐标轴所围图形的面积最小.