举一反三
- 证明:只要[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个非负整数,则[tex=17.929x1.571]gb7/rHUicIh5zZQdtckhwIqwLK8SxnMNsoX1RfjIbxSbZuRqJmsagk7tuQdMPlrx9DmI5ZyvR8T3Na+zJlN31+7ohcxTVkkplIsJcxKwzks=[/tex]
- 证明:只要[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个非负整数,则[tex=2.429x1.357]1iA0S9lCklDI0Nn5UvziIQ==[/tex]可被5整除。
- 证明:只要[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个大于等于2的整数,则具有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个元素的集合中有[tex=4.286x1.357]iXXn9SqdYts5bP7igqmEYg==[/tex]个子集恰好含有2个元素。
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个整数且[tex=2.429x1.143]iYaM6mXHRcXGx9kzFAhMgQ==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数。
- 证明:若[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是大于1的整数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]可以写成素数之积。
内容
- 0
证明:只要[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个正整数,则[tex=2.429x1.357]tbW+uY8oQu65HQ5SUc+f0Q==[/tex]可被2整除。
- 1
证明:只要[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个正整数,则[tex=20.214x1.5]EZQBbnAm3cxZDCZhIYeWaIfO4UUixfJexB5fW2aUwZvXE92SzBSleVKfGu1BElIaNrYIqQIt2DD2kDHMnP1dNA==[/tex]
- 2
证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数且[tex=1.0x1.214]S08+KKG98HbrAJCN7f6pjg==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数。
- 3
证明如果[tex=2.286x1.357]2kqjUtwikOHWMG3hEG2REw==[/tex]是完全数,其中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是偶数。
- 4
证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数而且[tex=2.286x1.357]Y/jX++qwhtd2x9sTxG5NmA==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是偶数。使用归谬法证明