设图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的节点着色数[tex=4.071x1.357]UU8Ff5qWiNF1zOP6pkb1Xg==[/tex],则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]至少有[tex=4.571x1.357]mzLBfMSgL7cxcdvHOqqifA==[/tex]条边。
举一反三
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是简单图, 证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是完全图当且仅当 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 有 [tex=2.857x2.214]jcCMHflCR8OS9TosV6N5vMuPmF8DXSHKmIKBnV2ExTOzIbKHOfak9FzzxRS+B78HS9CqeTlpcCcUdpM7q4bAOg==[/tex] 条边.
- 设连通的简单平面图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有 7 个顶点,15 条边,求[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的面数 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 并证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 为极大平面图,并画出一个这样的极大平面图.
- 证明若图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的点次的最小值 [tex=1.857x1.214]YI+03axNxh+sm6Ds5FFm4Q==[/tex] 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 至少有一条回路.
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个群,试证:当且仅当[tex=4.571x1.357]Cfp84m7VnW4dk+f1tg/L9w==[/tex]时,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]上的伴随作用有效。
- 已知平面图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的阶数 [tex=1.929x1.0]CrBsWLm0WOkljV5cbIFATw==[/tex],边数 [tex=2.214x1.0]EEwIwCJeovOwZXgifc0ljQ==[/tex],面数 [tex=1.786x1.0]reu53N3Sx6JBcB7RmwJsfA==[/tex], 连通分支数 [tex=1.857x1.0]JjqCv0etyb2+KgFhYPGHDQ==[/tex], 求 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的对偶图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的 阶数 [tex=1.0x1.071]cX8K3PWqy8T7iclEsYEJ7Q==[/tex]、边数[tex=1.286x1.071]temAN1Jb20fn4CmpuXo4pw==[/tex]面数 [tex=0.929x1.071]IBNH4jjhZIn6t7n7W9WcfQ==[/tex].