• 2022-06-16
    设常数a,b满足0<a<b,若函数f(x)在区间[a,b]上连续,在区间(a,b)内可导,且xf'(x)<2f(x)当x∈(a,b)时成立,则对于任何x∈(a,b)必有
    A: a2f(x)>x2f(x)
    B: b2f(x)>x2f(b)
    C: x2f(x)>b2f(b)
    D: x2f(x)>a2f
  • B

    内容

    • 0

      设f(x)可导,恒正,且0<a<x<b时恒有f(x)<xf′(x),则 A: bf(a)>af(b). B: abf(x)>x2f(b). C: af(a)<xf(x). D: abf(x)<x2f(a).

    • 1

      【单选题】设 f ( x ) 是可导函数, 则 lim Δ x → 0 f 2 ( x + △ x ) − f 2 ( x ) △ x = ()。 A. [ f ′ ( x ) ] 2 " role="presentation"> [ f ′ ( x ) ] 2 B. 2 f ′ ( x ) " role="presentation"> 2 f ′ ( x ) C. 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) x ) 2 f ( x ) f ′ ( x ) " role="presentation"> f ( x ) f ′ ( x ) D. 不存在;

    • 2

      设函数$f(x)=x|x(x-2)|$, 则 A: $f(x)$在$x=0$处可导,在$x=2$处不可导 B: $f(x)$在$x=0$处不可导,在$x=2$处可导 C: $f(x)$在$x=0$和$x=2$处都可导 D: $f(x)$在$x=0$和$x=2$处都不可导

    • 3

      若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:() A: (f″(x)f(x)-[f′(x)]<sup>2</sup>)/[f(x)]<sup>2</sup> B: f″(x)/f′(x) C: (f″(x)f(x)+[f′(x)]<sup>2</sup>)/[f(x)]<sup>2</sup> D: ln″[f(x)]·f″(x)

    • 4

      f(x)在x=0处连续,当x→0时f(x^2)/x^2=1,则f(0)=?