设常数a,b满足0<a<b,若函数f(x)在区间[a,b]上连续,在区间(a,b)内可导,且xf'(x)<2f(x)当x∈(a,b)时成立,则对于任何x∈(a,b)必有
A: a2f(x)>x2f(x)
B: b2f(x)>x2f(b)
C: x2f(x)>b2f(b)
D: x2f(x)>a2f
A: a2f(x)>x2f(x)
B: b2f(x)>x2f(b)
C: x2f(x)>b2f(b)
D: x2f(x)>a2f
举一反三
- 设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)( )
- 已知\( y = {f^2}(x) \),假设\( f(u) \)二阶可导,则 \( y'' \)为( ). A: \( 2{[f'(x)]^2} + 2f(x)f'(x) \) B: \( 2[f'(x)] + 2f(x)f''(x) \) C: \( 2{[f'(x)]^2} + 2f(x)f''(x) \) D: \( 2{[f'(x)]^2} + f(x)f''(x) \)
- 若函数$f(x)$具有二阶导数,且$y=f({{x}^{2}})$,则$y'' =$( )。 A: $f'' ({{x}^{2}})$ B: $2f'’ ({{x}^{2}})$ C: $2f’ ({{x}^{2}})+4{{x}^{2}}f’' ({{x}^{2}})$ D: $4{{x}^{2}}f’ ({{x}^{2}})+2f'' ({{x}^{2}})$
- 1.设$f(x)$在区间$I$内连续且$f(x)\ne 0$,若${{F}_{1}}(x)$,${{F}_{2}}(x)$是$f(x)$的两个原函数,则在区间$I$内( ). A: ${{F}_{2}}(x)\equiv {{F}_{1}}(x)$ B: ${{F}_{1}}(x)\equiv C{{F}_{2}}(x)$ C: ${{F}_{1}}(x)+{{F}_{2}}(x)\equiv C$ D: ${{F}_{2}}(x)-{{F}_{1}}(x)\equiv C$
- 已知\( y = f({x^2}) \),假设\( f(u) \)二阶可导,则\( y'' \)为( ). A: \( 4{x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) B: \( {x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) C: \( 4{x^2}f''({x^2}){\rm{ + }}f'({x^2}) \) D: \( {x^2}f''({x^2}){\rm{ + }}f'({x^2}) \)