A: a2f(x)>x2f(x)
B: b2f(x)>x2f(b)
C: x2f(x)>b2f(b)
D: x2f(x)>a2f
举一反三
- 设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)( )
- 已知\( y = {f^2}(x) \),假设\( f(u) \)二阶可导,则 \( y'' \)为( ). A: \( 2{[f'(x)]^2} + 2f(x)f'(x) \) B: \( 2[f'(x)] + 2f(x)f''(x) \) C: \( 2{[f'(x)]^2} + 2f(x)f''(x) \) D: \( 2{[f'(x)]^2} + f(x)f''(x) \)
- 若函数$f(x)$具有二阶导数,且$y=f({{x}^{2}})$,则$y'' =$( )。 A: $f'' ({{x}^{2}})$ B: $2f'’ ({{x}^{2}})$ C: $2f’ ({{x}^{2}})+4{{x}^{2}}f’' ({{x}^{2}})$ D: $4{{x}^{2}}f’ ({{x}^{2}})+2f'' ({{x}^{2}})$
- 1.设$f(x)$在区间$I$内连续且$f(x)\ne 0$,若${{F}_{1}}(x)$,${{F}_{2}}(x)$是$f(x)$的两个原函数,则在区间$I$内( ). A: ${{F}_{2}}(x)\equiv {{F}_{1}}(x)$ B: ${{F}_{1}}(x)\equiv C{{F}_{2}}(x)$ C: ${{F}_{1}}(x)+{{F}_{2}}(x)\equiv C$ D: ${{F}_{2}}(x)-{{F}_{1}}(x)\equiv C$
- 已知\( y = f({x^2}) \),假设\( f(u) \)二阶可导,则\( y'' \)为( ). A: \( 4{x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) B: \( {x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) C: \( 4{x^2}f''({x^2}){\rm{ + }}f'({x^2}) \) D: \( {x^2}f''({x^2}){\rm{ + }}f'({x^2}) \)
内容
- 0
设f(x)可导,恒正,且0<a<x<b时恒有f(x)<xf′(x),则 A: bf(a)>af(b). B: abf(x)>x2f(b). C: af(a)<xf(x). D: abf(x)<x2f(a).
- 1
【单选题】设 f ( x ) 是可导函数, 则 lim Δ x → 0 f 2 ( x + △ x ) − f 2 ( x ) △ x = ()。 A. [ f ′ ( x ) ] 2 " role="presentation"> [ f ′ ( x ) ] 2 B. 2 f ′ ( x ) " role="presentation"> 2 f ′ ( x ) C. 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) x ) 2 f ( x ) f ′ ( x ) " role="presentation"> f ( x ) f ′ ( x ) D. 不存在;
- 2
设函数$f(x)=x|x(x-2)|$, 则 A: $f(x)$在$x=0$处可导,在$x=2$处不可导 B: $f(x)$在$x=0$处不可导,在$x=2$处可导 C: $f(x)$在$x=0$和$x=2$处都可导 D: $f(x)$在$x=0$和$x=2$处都不可导
- 3
若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:() A: (f″(x)f(x)-[f′(x)]<sup>2</sup>)/[f(x)]<sup>2</sup> B: f″(x)/f′(x) C: (f″(x)f(x)+[f′(x)]<sup>2</sup>)/[f(x)]<sup>2</sup> D: ln″[f(x)]·f″(x)
- 4
f(x)在x=0处连续,当x→0时f(x^2)/x^2=1,则f(0)=?