• 2022-06-08 问题

    设z=f(x2+y2),其中f具有二阶导数,则等于(). A: A2f’(x2+y2) B: B4x2f"(x2+y2) C: C2’(x2+y2)+4x2f"(x2+y2) D: D2xf"(x2+y2)

    设z=f(x2+y2),其中f具有二阶导数,则等于(). A: A2f’(x2+y2) B: B4x2f"(x2+y2) C: C2’(x2+y2)+4x2f"(x2+y2) D: D2xf"(x2+y2)

  • 2022-06-16 问题

    设常数a,b满足0<a<b,若函数f(x)在区间[a,b]上连续,在区间(a,b)内可导,且xf'(x)<2f(x)当x∈(a,b)时成立,则对于任何x∈(a,b)必有 A: a2f(x)>x2f(x) B: b2f(x)>x2f(b) C: x2f(x)>b2f(b) D: x2f(x)>a2f

    设常数a,b满足0<a<b,若函数f(x)在区间[a,b]上连续,在区间(a,b)内可导,且xf'(x)<2f(x)当x∈(a,b)时成立,则对于任何x∈(a,b)必有 A: a2f(x)>x2f(x) B: b2f(x)>x2f(b) C: x2f(x)>b2f(b) D: x2f(x)>a2f

  • 2022-06-07 问题

    设函数f(x)=a|x|(a>0),且f(2)=4,则(  ) A: f(-1)>f(-2) B: f(1)>f(2) C: f(2)<f(-2) D: f(-3)>f(-2)

    设函数f(x)=a|x|(a>0),且f(2)=4,则(  ) A: f(-1)>f(-2) B: f(1)>f(2) C: f(2)<f(-2) D: f(-3)>f(-2)

  • 2022-06-07 问题

    设f(x)=x2+bx+c且f(0)=f(2),则(  ) A: f(-2)<c<f(32) B: f(32)<c<f(-2) C: f(32)<f(-2)<c D: c<f(32)<f(-2)

    设f(x)=x2+bx+c且f(0)=f(2),则(  ) A: f(-2)<c<f(32) B: f(32)<c<f(-2) C: f(32)<f(-2)<c D: c<f(32)<f(-2)

  • 2022-06-19 问题

    f(x)=x2+bx+c,x∈R,有f(2+x)=f(2-x),则( ) A: f(1)<f(2)<f(4) B: f(2)<f(4)<f(1) C: f(4)<f(2)<f(1) D: f(2)<f(1)<f(4) E: f(1)<f(4)<f(2)

    f(x)=x2+bx+c,x∈R,有f(2+x)=f(2-x),则( ) A: f(1)<f(2)<f(4) B: f(2)<f(4)<f(1) C: f(4)<f(2)<f(1) D: f(2)<f(1)<f(4) E: f(1)<f(4)<f(2)

  • 2022-06-18 问题

    已知\( y = {f^2}(x) \),假设\( f(u) \)二阶可导,则 \( y'' \)为( ). A: \( 2{[f'(x)]^2} + 2f(x)f'(x) \) B: \( 2[f'(x)] + 2f(x)f''(x) \) C: \( 2{[f'(x)]^2} + 2f(x)f''(x) \) D: \( 2{[f'(x)]^2} + f(x)f''(x) \)

    已知\( y = {f^2}(x) \),假设\( f(u) \)二阶可导,则 \( y'' \)为( ). A: \( 2{[f'(x)]^2} + 2f(x)f'(x) \) B: \( 2[f'(x)] + 2f(x)f''(x) \) C: \( 2{[f'(x)]^2} + 2f(x)f''(x) \) D: \( 2{[f'(x)]^2} + f(x)f''(x) \)

  • 2021-04-14 问题

    【单选题】设 f ( x ) 是可导函数, 则 lim Δ x → 0 f 2 ( x + △ x ) − f 2 ( x ) △ x = ()。 A. [ f ′ ( x ) ] 2 " role="presentation"> [ f ′ ( x ) ] 2 B. 2 f ′ ( x ) " role="presentation"> 2 f ′ ( x ) C. 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) x ) 2 f ( x ) f ′ ( x ) " role="presentation"> f ( x ) f ′ ( x ) D. 不存在;

    【单选题】设 f ( x ) 是可导函数, 则 lim Δ x → 0 f 2 ( x + △ x ) − f 2 ( x ) △ x = ()。 A. [ f ′ ( x ) ] 2 " role="presentation"> [ f ′ ( x ) ] 2 B. 2 f ′ ( x ) " role="presentation"> 2 f ′ ( x ) C. 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) x ) 2 f ( x ) f ′ ( x ) " role="presentation"> f ( x ) f ′ ( x ) D. 不存在;

  • 2022-06-19 问题

    设f(x)为连续函数,F(t)=,则F’(2)=()。 A: f(2) B: 2f(2) C: -f(2) D: 0

    设f(x)为连续函数,F(t)=,则F’(2)=()。 A: f(2) B: 2f(2) C: -f(2) D: 0

  • 2022-06-16 问题

    设f(x)为连续函数,F(t)=f(x)dx,则F’(2)=()。 A: 2f(2) B: f(2) C: -f(2) D: 0

    设f(x)为连续函数,F(t)=f(x)dx,则F’(2)=()。 A: 2f(2) B: f(2) C: -f(2) D: 0

  • 2022-06-18 问题

    已知\( y = f({x^2}) \),假设\( f(u) \)二阶可导,则\( y'' \)为( ). A: \( 4{x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) B: \( {x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) C: \( 4{x^2}f''({x^2}){\rm{ + }}f'({x^2}) \) D: \( {x^2}f''({x^2}){\rm{ + }}f'({x^2}) \)

    已知\( y = f({x^2}) \),假设\( f(u) \)二阶可导,则\( y'' \)为( ). A: \( 4{x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) B: \( {x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) C: \( 4{x^2}f''({x^2}){\rm{ + }}f'({x^2}) \) D: \( {x^2}f''({x^2}){\rm{ + }}f'({x^2}) \)

  • 1 2 3 4 5 6 7 8 9 10