• 2022-06-16
    求复数域上线性变换空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 的线性变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 的特征值与特征向量.已知[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在一组基下的矩阵为:[tex=6.214x2.786]sSXBpxJWudVpH1R35o4LnICFRL28yBYsK66HeilXyE6CC47hOP02bOALCujE3jwKBlrph0855TMfIxwneXt19w==[/tex]
  • 解 [tex=1.286x1.357]wvurYZGpLRJ2QWw7pn3sgA==[/tex]设[tex=0.786x1.0]3UKvB+w607mbn/eWBx9vkQ==[/tex]在给定基[tex=1.929x1.0]A4jSygN0882R6SV3eve5dyhKA/5f6aU7CkpCJuZGXtnf/5Lv7s+zxftaL6KfKyAR[/tex]下的矩阵为[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex],且[tex=0.786x1.0]3UKvB+w607mbn/eWBx9vkQ==[/tex]的特征多项式为[tex=22.357x2.786]aRtToF0rDFkShSGVSTWjNag7k36CUIRlFQe9n53zAxEUGtVFmkN1iQ8KAZPNu9jCs7iX+vTXOXyPvV6Z/pcpkm0EIs4wKT9EpWkGPmGIhBk65h4ahDCGv9Wxtez90bZLalWIGLq8yOGC9bcblCRiJ9PxZJJ95mRpncXsk1no/OOhDM1pPcKmUMIWWC/cGybexxUa+e60zsrLQx55ncGyIg==[/tex]故[tex=0.786x1.0]3UKvB+w607mbn/eWBx9vkQ==[/tex]的特征值为 7,-2[br][/br]先求属于特征值[tex=1.929x1.0]63gIJXr8k/QzfvG5N/icbA==[/tex]的特征向量.解方程组[tex=7.429x2.786]fnpmC2J6JmQBLyo5NmGAz6bJZ5nUG+xsWNSNAfV8/WcdcUwt/8eOwtpREH4bhzqwcDlFNrHRcwXLQWtukdUsFoMeLMR9UVnSOkiDIG08RmdtzE8jE7ybvLXuXyUXl9wR[/tex]它的基础解系为[tex=3.0x2.786]075gCzZzsMRb6HYXYk9X97256s5qpoFo7NCS36NRb/keQWjYSbp2IDdpd5pghnX7md7B5ea0HgVYULPoIRLI7w==[/tex],因此[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的属于特征值 7 的全部特征向量为[tex=4.429x1.286]lYauz4bQlNgr1T/6JDMoGNhElQCMekbd+7LL0UwrHy0=[/tex],其中[tex=4.0x1.214]uLz1hCd+UYVy1QDcKt1LXv7qOjr6tsY/kASeZslA1Y3DE/B+WDmL0S7BUCVPwU74[/tex]再解方程组[tex=7.429x2.786]fnpmC2J6JmQBLyo5NmGAzzSMcIpB39WrHogbBKi1BrWVizijb8a6Sqy6XiEoCZWe+XxK//2cIuZDKDNm7PNetqp2J6ALAVgf1R1tYuPmi31niEete+zg29g+YqiGqEFV[/tex]它的基础解系为[tex=3.786x2.786]075gCzZzsMRb6HYXYk9X91SI2G22hinzEx9EmKO3hcDG3pVJZY3TwuUZmUgQRrLxrIr1Kf6bJYW3tG/6VMlETA==[/tex],因此[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的属于特征值-2 的全部特征响向量为[tex=4.429x1.286]NhQZR142hKWEhpSu+Y3Ocw2hMSxePYnnnE3J52yDOT4=[/tex],其中[tex=5.0x1.214]LHPdgn/hU1FoTRUtb/v5K82MGB5w5bPr2AekGxiFrbSAXNcDaLR+iogOnzBedgCf[/tex]

    举一反三

    内容

    • 0

      证明:如果线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的线性变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]以[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]中每个非零向量作为它的特征向量,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数乘变换.

    • 1

      设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换.证明:1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值一定不为0;2) 如果[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值,那么[tex=1.643x1.357]7hXLKuNcz29qRRA2zjn4rA==[/tex]是[tex=1.714x1.214]d+9NDUvA5ZDrRGeFW5fxcQ==[/tex]的特征值.

    • 2

      [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的线性变换. 1) 若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的某组基下矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是某多项式[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex]的伴侣阵,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最 小多项式是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex]. 2) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最高次的不变因子是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex],则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最小多项式是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex].

    • 3

      求下列线性变换在所指定基下的矩阵:在空间[tex=2.214x1.357]RFwDoYxrXrc4aqxH0AQ83o9WXoksKVXERM/Il35Oy2U=[/tex]中,设变换[tex=0.786x1.0]3UKvB+w607mbn/eWBx9vkQ==[/tex] 为[tex=8.643x1.357]KPNcgolBTDI6KUqdO1HC8xpN2xwYmPHNg23udRzl2KA=[/tex]试求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在基[tex=18.571x2.357]47jSrsVFI3KBnyxUZLScwFZ1rBrdBlbRI3rSNCV8KDF2HheXvdJ6InueImPcvT1vLNI7X7Z76wFMg361L06xHqYlQCxiUn31W5zybOHz9/Y=[/tex]下的矩阵 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex];

    • 4

      求下列线性变换在所指定基下的矩阵:在空间[tex=1.929x1.929]5tYFD3FfWZ7ry90wyYisxw==[/tex]中,设变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为[tex=8.643x1.357]KPNcgolBTDI6KUqdO1HC8xpN2xwYmPHNg23udRzl2KA=[/tex].[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在基[tex=21.643x2.429]+4R0U1Uo/vLwmyUPgCQpy5uEsXgBuO32SimbgZnQOtU26az+a343EClLRY6M9RAU3xfUBxOryDm1pp/KrSQ1ksojS4KeWdnE1IVEE7jStHOUJ22NoRAM2MupzH+EF+z2[/tex]下的矩阵;