举一反三
- 求复数域上线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的线性变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值与特征向量,已知[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在一组基下的矩阵为[tex=5.786x2.786]hB8sGfF8hpZRTKdvt1J/eID9fNghG5RBsDIPY/vVGtTza7ol+NMStiGlU9bmYU1HsjInbJ0o9Jl5CxUyUwoXog==[/tex]
- 求复数域上线性变换空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的线性变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 的特征值与特征向量.已知 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 在一组基下的矩阵为:[tex=9.5x3.929]sSXBpxJWudVpH1R35o4LnIcNXurDIqYZ4dH4l1OxViDlMo63aWtGmjOJfggNcg2J+Vks/cV38rcVeic5yfu+bGXmD4F++M6K2iUBT1zCdlcHcA4BtkekP2I/wslns5W3[/tex]
- 求复数域上线性变换空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 的线性变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值与特征向量.已知[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在一组基下的矩 阵为:[tex=7.786x3.5]K2vMsZ5TBuB8kq2pfBmYYGenXm4zc3oWvt58e1TeEEOSqO+8309teSLigxvVBmAccek8G5hB3nWKuC2Jx3st2b4nh7mzlB6NiGzq3jR3pBvoFckPu2zvw/Z4qC4o6p9a[/tex]
- 求复数域上线性变换空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的线性变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值与特征向量.已知[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在一组基下的矩 阵为:[tex=7.071x2.786]sSXBpxJWudVpH1R35o4LnN0OSmn/R2gssTNClSbe/RxSWLG4hXxToC26Jkm+jbgx3zmrOwG7+WuS1V1+XF7emQ==[/tex]
- 设[tex=4.643x1.0]2bOOLS2qYWpFCMCkhOx7kWKBZXCHc0rkmUgF/O9obdwPxSggBAHYEkc4KmIt+owdgvolNqDVZJPv8y6xbkiCkQ==[/tex] 是四维线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一组基,已知线性变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在这组基下的矩阵为[tex=9.714x4.786]dEdrC9SQsN/3Vx39SaFo4F4k4j2a4XW0+ki4qRfuccZ3acDq0FvL6o/bF+WQXPHLP+sqGWr3situWKRnWapkr5ed8utdPa1QDBnWmM4vMGRQAeNdtMkTuQmnXcxPCj9/o6UgHc6gwEhnkF/JDVCroXTvP7C5kUQ+7yYTMkDBfGg=[/tex]1) 求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的核与值域;2) 在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的核中选一组基,把它扩充成[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一组基,并求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在这组基下的矩阵;3) 在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的值域中选一组基,把它扩充成[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 的一组基,并求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在这组基下的矩阵.
内容
- 0
证明:如果线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的线性变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]以[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]中每个非零向量作为它的特征向量,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数乘变换.
- 1
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换.证明:1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值一定不为0;2) 如果[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值,那么[tex=1.643x1.357]7hXLKuNcz29qRRA2zjn4rA==[/tex]是[tex=1.714x1.214]d+9NDUvA5ZDrRGeFW5fxcQ==[/tex]的特征值.
- 2
[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的线性变换. 1) 若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的某组基下矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是某多项式[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex]的伴侣阵,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最 小多项式是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex]. 2) 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最高次的不变因子是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex],则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的最小多项式是[tex=1.929x1.357]EJ5ekqmr2bWoAT+xH4aA4Q==[/tex].
- 3
求下列线性变换在所指定基下的矩阵:在空间[tex=2.214x1.357]RFwDoYxrXrc4aqxH0AQ83o9WXoksKVXERM/Il35Oy2U=[/tex]中,设变换[tex=0.786x1.0]3UKvB+w607mbn/eWBx9vkQ==[/tex] 为[tex=8.643x1.357]KPNcgolBTDI6KUqdO1HC8xpN2xwYmPHNg23udRzl2KA=[/tex]试求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在基[tex=18.571x2.357]47jSrsVFI3KBnyxUZLScwFZ1rBrdBlbRI3rSNCV8KDF2HheXvdJ6InueImPcvT1vLNI7X7Z76wFMg361L06xHqYlQCxiUn31W5zybOHz9/Y=[/tex]下的矩阵 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex];
- 4
求下列线性变换在所指定基下的矩阵:在空间[tex=1.929x1.929]5tYFD3FfWZ7ry90wyYisxw==[/tex]中,设变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为[tex=8.643x1.357]KPNcgolBTDI6KUqdO1HC8xpN2xwYmPHNg23udRzl2KA=[/tex].[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在基[tex=21.643x2.429]+4R0U1Uo/vLwmyUPgCQpy5uEsXgBuO32SimbgZnQOtU26az+a343EClLRY6M9RAU3xfUBxOryDm1pp/KrSQ1ksojS4KeWdnE1IVEE7jStHOUJ22NoRAM2MupzH+EF+z2[/tex]下的矩阵;