曲线f(x)=xlnx在x=e处的切线方程为( )
A: y=x
B: y=x-e
C: y=2x+e
D: y=2x-e
A: y=x
B: y=x-e
C: y=2x+e
D: y=2x-e
举一反三
- 3. 方程$x y' + xy = y $的通解为 A: \[y=\mathit{c}\,{{e}^{-x}}\] B: \[y=\mathit{c}x\,{{e}^{-x}}\] C: \[y=\mathit{c}x\,{{e}^{-x^2}}\] D: \[y=\mathit{c}x^2\,{{e}^{-x}}\]
- 设二维随机变量 (X , Y )服从二维正态分布,则随机变量X + Y与X – Y不相关的充要条件为( ) A: E (X ) = E (Y ) B: E (X 2) – [E (X )]2 = E (Y 2 ) – [E (Y )]2 C: E (X 2 ) = E (Y 2) D: E (X 2) + [E (X )]2 = E (Y 2 ) + [E (Y )]2
- 方程$(x^2+1)(y^2-1) + xy y' = 0$的通解为 A: $y^2 = C \frac{e^{-x^2}}{x^2}$ B: $y = C \frac{e^{-x^2}}{x^2}$ C: $y^2 = C \frac{e^{-x^2}}{x^2}+1$ D: $y=C \frac{e^{-x^2}}{x^2}+1$
- cov(X,Y)= E{(X-E(X))(Y-E(Y ))}=E(XY)-E(X)E(Y)
- 设\(z = {e^ { { y \over x}}} + {x^y} + {y^x}\),则\({z_x} = \) A: \({1 \over x}{e^ { { y \over x}}} + {x^y}\ln x + x{y^{x - 1}}\) B: \(- {y \over { { x^2}}}{e^ { { y \over x}}} + {x^y}\ln x + x{y^{x - 1}}\) C: \({e^ { { y \over x}}} + y{x^{y - 1}} + {y^x}\ln y\) D: \( - {y \over { { x^2}}}{e^ { { y \over x}}} + y{x^{y - 1}} + {y^x}\ln y\)