证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是以[tex=0.714x1.286]atrPPistVyxj7cY8rjePCQ==[/tex] 为周期的周期函数,则函数[tex=5.714x1.286]bLHEKlcP3CjiiEyrtL3GV2gSNSV5rJHewRzvuwtqLes=[/tex]是以[tex=3.929x2.0]+V1Z9eRTKDCYMOpGVhOrRzGiL+qMB1L3JhonNMQy3DQ=[/tex]为周期的周期函数。
举一反三
- 设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 是连续函数。(1) 利用定义证明函数 [tex=7.357x2.643]wj19iVziwhcddHoSbOeZ53gjMBxjQAH/PcfTSpadvE0UnkPwDslb00HFtKYkgM9X[/tex] 可导, 且[tex=5.5x1.286]aioBMzvqzBeZ8o5EjtXw19ELszAjdIRruviyhqqX+L4=[/tex];(2) 当[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 是以 2 为周期的周期函数时, 证明函数 [tex=13.786x2.786]Vhx2KvWIsGdQGZadW3if7acVl7IXSwWOwcV1slKNUnHQ+aZuky9CS29QEB/7qIHsr9w3YIYs6RJhvITWAy2vjHKGtDLy8R6Pbmh6BDCQrkk=[/tex]也是以 2 为周期的周期函数。
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是连续函数,当[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是以2为周期的周期函数时,证明[tex=3.143x1.286]RJcl+hPahnWD/JzSl8v51g==[/tex][tex=4.929x2.286]0fRlWbNJGvj5VdT3U3Vk0o7MsngDa9KcEA2NAoFHkMI=[/tex][tex=4.143x2.429]2e0RkuqTyA9PZn4pM4xWfigqxIm37OrplsiC4FF1NdI=[/tex]也是以2为周期的周期函数 .
- 设[tex=9.357x2.5]NW+Q6qhR9qMwFYIXdm/P9gOuLubklcu4xQaceK4KvrdRpPRsgqW+PFcwrgZEa8gdCC3tL694woFG5YfYgdifAQ==[/tex]。(1)证明[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是以[tex=0.643x1.286]USGVpa36zb6HMu8k0moHJA==[/tex]为周期的周期函数;(2)求[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的值域。
- 9判别下列函数是否是周期函数,若是周期函数,求其周期 :(1) [tex=8.357x1.357]jijpvC8Aw74QOOOJh5Va05j3PtA64Pms1Q5qDGlqeN4=[/tex](2) [tex=5.643x1.357]TG5DUF3HrCbhIJWDEcp5Pj9u3e2PUgpbN4NJQ6DZXLw=[/tex](3) [tex=5.714x1.357]SBxtvKszj8+jJcycMEKn5vqfhi5GLWqH4Gac9QRbIHc=[/tex](4) [tex=6.929x1.357]NZ5EVFRfE4pFsgkbEOhFkNg5/qZx8geAT5eL+yzbq1Q=[/tex]
- 设[tex=9.0x2.857]dT5tO8+kvspSX29znp6hWPcRleyC/Oor3hOtFnEeVKWMhAwyQN1L849Sg2m7O8+O[/tex].(1)证明[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是以[tex=0.571x0.786]l57IXZOdm4C+U7oqJ3rVIQ==[/tex]为周期的周期函数;(2)求函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的值域.