设函数[tex=1.786x1.286]3ei0lKEDoPnD38qhYMj3BA==[/tex]在[tex=0.857x1.286]pvArWWaOQg4JrsY7c7+hxQ==[/tex]处连续,且[tex=4.143x1.357]UCTlaEVLJUzEvf/9R/yhRqExjhXRioOzffMCUpzx466pcaU3ENp6OC06YfSEFH0E[/tex],证明存在[tex=0.857x1.286]pvArWWaOQg4JrsY7c7+hxQ==[/tex]的领域使[tex=3.643x1.286]CCnfZ4Ae70v5Kp8yY8Huh9gZDOUTqHEDd0SbeWWG77E=[/tex]
举一反三
- 设[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]为区域[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]内一条正向简单闭曲线,[tex=0.857x1.286]pvArWWaOQg4JrsY7c7+hxQ==[/tex]为[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]内一点,如果[tex=1.786x1.286]3ei0lKEDoPnD38qhYMj3BA==[/tex]在[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]内解析,且[tex=3.714x1.357]UCTlaEVLJUzEvf/9R/yhRko4mucWtYPMdVFv6YoINsI=[/tex],[tex=4.429x1.429]ELLTMA24GtOYWMzJhf50KQfhcBvylQ5A5chHRY4fLrqskIQ5If4NbSnKtccHw808[/tex],在[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]内[tex=1.786x1.286]3ei0lKEDoPnD38qhYMj3BA==[/tex]无其他零点。试证:[tex=8.571x2.714]oneV9zJdx9B7p1RdBh46wwmOvQ8nCFfdaGkN/lDlwV10mSMg7+zuJ/wT7KM6i9+p2o17vxGtwcoZgORvEyPMwmZlk/mbdCk0ssMi+gMYCMM=[/tex]
- 求证:如果[tex=0.857x1.286]pvArWWaOQg4JrsY7c7+hxQ==[/tex]是[tex=1.786x1.286]3ei0lKEDoPnD38qhYMj3BA==[/tex]是[tex=4.429x1.357]I+5e1TrKmn9ukTexUtlWOA==[/tex]级零点那么[tex=0.857x1.286]pvArWWaOQg4JrsY7c7+hxQ==[/tex]是[tex=2.071x1.429]dNwQY5oEJJleIhonccp7D1NKGUGoINb4vKamZX1qSYA=[/tex]的[tex=2.5x1.286]1R3QXXZFdDEOsoVKiSPokA==[/tex]级零点。
- 设 [tex=1.786x1.286]3ei0lKEDoPnD38qhYMj3BA==[/tex] 在 [tex=2.857x1.286]WLSgu+RhTYFvD6XoJniQ9A==[/tex] 上解析,在 [tex=2.857x1.286]jEYZC8KyxZCGb+rF0/rgMA==[/tex] 上有 [tex=4.571x1.286]X/UkyDn9Ad6oNDKclFxSBg==[/tex],并且 [tex=4.571x1.286]6yFzJx+2DN/MwdXXmwJj3w==[/tex],其中 [tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex] 及 [tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex] 是有限正数。证明:[tex=1.786x1.286]3ei0lKEDoPnD38qhYMj3BA==[/tex] 在 [tex=2.857x1.286]MkYMHjcWF9EDoFGOLuu+Jw==[/tex] 内至少有一零点。
- 判断说法是否正确?为什么?每一个在[tex=0.857x1.286]pvArWWaOQg4JrsY7c7+hxQ==[/tex]连续的函数一定可以在[tex=0.857x1.286]pvArWWaOQg4JrsY7c7+hxQ==[/tex]的邻域内展开成Taylor级数
- 设函数 [tex=1.786x1.357]mFDBz09I28g+hkgtiXrpNg==[/tex] 在 [tex=0.857x1.0]wFpREt0h4SuMvRat++4WMg==[/tex] 处连续,且[tex=4.214x1.286]HHWv4BKJz9oky5PFHA7l/hJXENCAxbyxcRhyYL/e/vQ=[/tex] , 证明存在[tex=0.857x1.0]wFpREt0h4SuMvRat++4WMg==[/tex] 的邻域使 [tex=3.643x1.286]CCnfZ4Ae70v5Kp8yY8Huh9gZDOUTqHEDd0SbeWWG77E=[/tex] 。