把抛物线[tex=3.857x1.286]6Ukrpt8KK27902/BhoLIpmLwtm+vNoiqBYa9ya2PeAY=[/tex]及直线[tex=6.5x1.286]v96cVO/vN8TOnG6sstlXr8Vp0z7CCoasMBDnY6Wo/YhM2Sq+l0lt3Xx0F5N1XzwP[/tex]所围成的图形绕x轴旋转,计算所得旋转体的体积。
举一反三
- 由抛物线 \( { { y}^{2}}=4ax\)及直线\(x= { { x}_{0}}( { { x}_{0}}>0)\) 所围成的图形绕 \(x\)轴旋转所得旋转体的体积为 =( )。 A: \(\frac{4}{3} { { a}^{2}}\) B: \(\frac{8}{3} { { a}^{2}}\) C: \(\frac{16}{3} { { a}^{2}}\) D: \(\frac{32}{3} { { a}^{2}}\)
- 求微分方程[tex=8.357x1.357]m5JIhzHdcS9bmKEwWvshLHUX4xMqwQRk2Suh2UXtBbw=[/tex]的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2及x轴所围成平面图形绕x轴旋转一周所得旋转体体积最小.
- \( y = {1 \over x},y = 0,x = 1,x = 2 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)=( )。 A: \( \pi \) B: \( {\pi \over 2} \) C: \( {\pi \over 3} \) D: \( {\pi \over 6} \)
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 一平面图形由抛物线[tex=3.571x1.429]i8i8ub+07M6qZFkszzHq2A==[/tex]与过点(3,1)处的法线及x轴、y轴所围成,求此平面图形绕x轴旋转所得旋转体的体积。