一平面图形由抛物线[tex=3.571x1.429]i8i8ub+07M6qZFkszzHq2A==[/tex]与过点(3,1)处的法线及x轴、y轴所围成,求此平面图形绕x轴旋转所得旋转体的体积。
举一反三
- 求微分方程[tex=8.357x1.357]m5JIhzHdcS9bmKEwWvshLHUX4xMqwQRk2Suh2UXtBbw=[/tex]的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2及x轴所围成平面图形绕x轴旋转一周所得旋转体体积最小.
- 求由x轴、曲线[tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex]及曲线[tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex]过原点的切线所围成图形的面积, 并求该图形分别绕x轴与y轴旋转所得旋转体的体积.
- 【计算题】求曲线所围成的平面图形绕指定轴旋转的旋转体的体积。 ,绕x轴,绕y轴
- 设平面图形由,x=1及y=2x所围成的上部分。 (1)求此平面图形的面积S;(2)求此平面图形绕x轴旋转而成的旋转体的体积/ananas/latex/p/7563
- 【计算题】求曲线 与直线x=1,x=4,y=0所围成的平面图形分别绕x轴,y轴旋转一周产生的旋转体体积.