• 2022-06-18
    如果 [tex=11.643x2.071]oKmxYqzNMIvbUItAKnyAUOFQCw8xK7ho1QTgX6hOG/L3QdMr8K7Vg8pdhoyXeHfU[/tex], 证明: 当且仅当可以选取 [tex=3.286x1.214]S1r9TKg/0CvhrA1vxbq3mQ==[/tex] 为实数时 [tex=2.0x1.357]pgrfr0NTyL2Gt2mGP4Yukg==[/tex] 将实轴 [tex=3.929x1.357]Hxr+WAd0pdX8wRxoSXYGR+WSldqPleujX0nHQcn47nw=[/tex] 映射为实轴[tex=4.143x1.357]Hxr+WAd0pdX8wRxoSXYGRwI2yMIrjdBp0f5EeLGOXKE=[/tex]
  • 证   在实轴 [tex=3.929x1.357]Hxr+WAd0pdX8wRxoSXYGR+WSldqPleujX0nHQcn47nw=[/tex] 上取 [tex=7.714x1.214]4WP8ECvGjnHxGPQIRkIQKkVNv3M5Jf24xo+PtGNU1DGgBhurc16OcnKZMR+SCbFq[/tex], 在分式线性变换[p=align:center][tex=12.643x2.071]oKmxYqzNMIvbUItAKnyAUK9TKu3/hM9advXbkevJyCkyjgjlskLk/tgB8mhAJVXWZur6IHYLkUIzUf224w6Ezg==[/tex]之下,设它们的像分别为 [tex=4.143x1.0]WIh1kdKYnOQN1MvpTJK8t4DCq95iGs42Ti3KTTZszqY=[/tex], 即[p=align:center][tex=10.786x2.5]xzbtY/UXUiE0n6bp+fuQ2UZK4YX2Jy7FwZ+eVedTnFPKzIDf1Nvmi3/hqxpiLjlTdYbIOySBMFWv5/XkXSjV0rqPadhVRps9aJV0bUY8cJE=[/tex]注意到 [tex=4.857x1.286]VKg59dPfA6nqhEFkHGlVelmjpufgRNtMtSdYPrwUWZg=[/tex], 我们分别就 [tex=2.357x1.0]TgUsCXs1L03Qjl5pPLXpdg==[/tex] 与 [tex=2.286x1.286]D0Z1aaNaNfqoMADzI/7hYQ==[/tex] 二种情形,由 [tex=4.143x1.0]WIh1kdKYnOQN1MvpTJK8t4DCq95iGs42Ti3KTTZszqY=[/tex] 为实数来证明 [tex=2.0x1.357]pgrfr0NTyL2Gt2mGP4Yukg==[/tex] 的表达式中系数均为实数.(i) 若 [tex=2.357x1.0]TgUsCXs1L03Qjl5pPLXpdg==[/tex], 则 [tex=2.214x1.286]Vk5HKs52CakNXjvOxxQ8DA==[/tex] (否则 [tex=5.0x1.143]zw//yqhU4k1NVe6KeCKXyQ==[/tex] 矛盾), 于是 由(1) 式得[p=align:center][tex=2.857x1.0]TLbmIY27lHOAC/psThNw3w==[/tex][p=align:center][tex=16.643x1.357]WT8yc6NR+dOlP9Xw2hETBlc3ulPEYwOQBlGnQlrSNkgNJYcfprzoQRtbZ/9T0F9S7Baga9fQM67hjhcqVRCM0g==[/tex]此时[tex=21.357x2.929]qeiYnKXLEhyhuGRg8yLtrx6w/eHY5NO/vdBNptXUxTHM95XRcB3iRxHJ7GFU9el613a0tFBu/LarbQS96tSW2Fhoz/iim7/eneIJcmw9kQOT3h/bcRXL0bMPNgr7WI03Ncqel7q+tky7TTKwoLadPaa5KUk5/RYex+zBAMyKTuwKRrytXpTyff9PAzA/6CPrC6N3bMHnHVn+39tfzGyCJtCxwuJQCRoaiLNxmHuKJOM=[/tex]系数均为实数.(ii) 若 [tex=2.286x1.286]D0Z1aaNaNfqoMADzI/7hYQ==[/tex], 则由式(1) 得[p=align:center][tex=8.071x3.071]rZM5/OPAdr7aX+kNl9iwpNk3Emy6cV5UHE8URFzZnmDQ7VVm+KHZFA1DkE5qhJxw7Q+fDyHSVgNHaePfbA4YFJt613oCMHWbpWOeDjMmaWxF94d0oFSRPBLDiThRuKn7mm3S+1LgewNhx/Sh2s+9Bw==[/tex]其中 [tex=2.214x1.286]Vk5HKs52CakNXjvOxxQ8DA==[/tex]([tex=1.714x1.0]Jg3fl6nIdMm2tmm5nNdFAw==[/tex] 时只须考思式(1) 的前两式类似(i) 证明).于是[p=align:center][tex=16.786x2.429]gjErZgojvFT4Psyr6NvqGu4s/tRwrlK8F5sqcghNI2GDpsuVNuim7dxVlX0Ul7Y/EII0zhVdqkMTbv54UrB1PBJ5tJEl7d8V91P8BxbgwyCY1DoRbm4l1+Dzp9Q+UOZy[/tex]其中 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 为实数此时[p=align:center][tex=19.071x2.5]1ZTJzkuL1aMnV7KgZm2x5VozR1A8CgL51Dxw7S4Nbwb8HE4m/xIBiZDDgmz01uxESNJpQAP4O0Fb8TR5OsFP6j10rBz3YMIBkyXRQuqZjMewXPRLMSvzemzifxvt4+kA46x8pgsD3BNE++5SLj4xlA==[/tex]故把实轴 [tex=3.929x1.357]Hxr+WAd0pdX8wRxoSXYGR+WSldqPleujX0nHQcn47nw=[/tex] 映射为实轴 [tex=4.143x1.357]Hxr+WAd0pdX8wRxoSXYGRwI2yMIrjdBp0f5EeLGOXKE=[/tex] 的分式线性变换[tex=2.0x1.357]pgrfr0NTyL2Gt2mGP4Yukg==[/tex] 均系数可以取为实数,反之显然.

    举一反三

    内容

    • 0

      证明:[tex=4.143x2.5]2KZjIu/SEdBkfzff7V2KqIZmVZfHf+i9xn6Xv6gLl2M=[/tex]将[tex=3.929x1.357]Hxr+WAd0pdX8wRxoSXYGR+WSldqPleujX0nHQcn47nw=[/tex]映为[tex=4.143x1.357]Hxr+WAd0pdX8wRxoSXYGRwI2yMIrjdBp0f5EeLGOXKE=[/tex]的充要条件是[tex=2.786x1.214]Alvty5eRAguf/BAip0SU2g==[/tex]为实数.

    • 1

      设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.

    • 2

      设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]

    • 3

      若多项式[tex=11.214x1.286]SjK0S1WZKzbJ274ItOnkARL7nFK+zdRrCU6QNLzudTI=[/tex]能被[tex=2.214x1.286]wAsYQMu7MmTp6bSm/DQuDw==[/tex]整除,则实数[tex=1.571x1.286]HKnp+uHPBk2bwxzOgbygNw==[/tex] A: 0 B: 1 C: 0或1 D: 2 E: 1或2

    • 4

      设函数f具有一阶连续导数,f''(0)存在,且f'(0)=0,f(0)=0,[tex=11.143x2.929]FgiJWgRQAKO6KUAKNMtpr42BveQYl/ToVviQ5cCtM9wcSY0QBIbGsihuelZ2Y0bAzYEbycD2Q2vfi4GC2Ijs1kB6/BRoIojNsaonEeVPYMMzs1ywITo1iMnLUJQZym3e[/tex].(1)确定a,使得g(x)处处连续;(2)对以上所确定的a,证明g(x)具有一阶连续导数.