• 2022-06-18
    两正数的和等于常数 [tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex], 求此正数的[tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex]次幂与[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]次幂 ([tex=2.643x1.286]W8Tf91McNcLThvqjMsebNg==[/tex],[tex=2.357x1.286]BEDS8N+MR3J6HdN8jF9ZRw==[/tex]) 乘积的极大值。
  • 解 设一正数为[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex], 则由题意知,需求函数[tex=12.857x1.286]+OzfBQChk9wc3GNgbTOPzjS5HWwhQrglVnF8QnRkjfg=[/tex]的极大值。 由于[tex=17.857x2.857]Hb6VUlC7e7mDzVM24HPIpSF+yVOc61B+VY16AZ0ITyhjSyQRRNiIRRjR1Uzef0qcE/3R3CtzgXOzLL69w/W6rd0sIbt4DixSoXyG0ySa2bRZHCw78tLOZqy13tcItYp1DaS5s7uidlEjJxQGE5BqqQ==[/tex]令[tex=3.929x1.286]nOJBJucVwlQuHq02hM9TshFm+YZTv5ximTg1KFYKyjI=[/tex], 即得[tex=4.643x1.857]MXfidCvEhJmY2vmuFRV4SBkCn4tX43qrjcFYEmEBtm8=[/tex]。 当[tex=4.643x1.857]JTe3jKlF2nDW8l1xbXGsDaPz4TAAJPkoIUk9+Z6qD0A=[/tex],[tex=3.929x1.286]yF7pvVInh0eInoseQrSNooOIScDfazfDCPMtH7DfBOY=[/tex]; 当[tex=6.429x1.857]avKZcevqlkhUSse2y+y/+1LQs6DjX+HFjrIDOrh7UOo=[/tex],[tex=3.929x1.286]dKSRd7CzvPlvJfroQlPiyVx59haGnoM35Ty14IdTQDg=[/tex]; 因此当[tex=4.643x1.857]MXfidCvEhJmY2vmuFRV4SBkCn4tX43qrjcFYEmEBtm8=[/tex]时 ,[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]有极大值[tex=11.286x2.429]5UGzyb7+mawiFQZfEbn2yUc1a3rOLGMFQ7dTSiAw1xC+Pv7DCiaXShPhN5wr+4vdQzD4veL/j+wOdqp5TXbQJXpuRJPROFjhZadVRwUCF3U=[/tex][tex=13.143x2.429]ffoEkWJmOHMlrw5yWD40QL+mPtukGFZI0MhavzQSXq9JPpqndDepdCMtYWJWCoYk0iotYfOr9d3JnV0O/saQ6TLd46pzipVG4vR6JtUpmlQ=[/tex] 。

    举一反三

    内容

    • 0

      求两个数[tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex]和[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]的最大公约数。

    • 1

      已知[tex=5.429x1.286]Fan8EvMPj+KW+0jde+nXkg==[/tex],[tex=4.857x1.286]EriJLB/m3d36tXY5gLEYMA==[/tex],[tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex]、[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]是两个互相垂直的单位向量,求:[tex=2.643x1.286]tUQU0AvMw5ZRmdR74hqXqWGhU7imCY88oCO0qmzgd+c=[/tex].

    • 2

      随机变量[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex]分别以概率0.4、[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]和[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]取值1、2、3、4,并且[tex=3.071x1.286]fknOBgzbjEu52cPH0WBW3g==[/tex],[tex=3.071x1.286]UAJJxdfCoB8SKuppr0cT/w==[/tex].求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]、[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]。

    • 3

      设[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]是有理数,满足[tex=9.214x2.929]wLLnuhaTkejykG34Lose4Gk3bDdglgIOUPyksgtxtXmt1sHAbktViJ8p1ePynplK3+wsNPKnCMhi2L94ONh39NTRjZdrdBEvRo1TQVd9L2o=[/tex],求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]的值。

    • 4

      设[tex=1.643x1.286]G+YhXSa7jurfipYEGhOheA==[/tex]在[tex=2.643x1.286]IX8IuKGq1foKl3pSAuE5yAOEHCx03vTEUzdPcQj5K+w=[/tex]内连续可导,[tex=7.5x1.286]Eogaj7RbWq2Cd7aBB3fq8wxaIJLqyNULOHU9lNcFOgY=[/tex],[tex=8.857x1.714]P5JDpZRcs/6rtUvftY3l8UCNBXKqcii8rqn9gNnSAV35zqsxUtvz0URtELZM6VKI59UttH/pWhk4/X/OklHTzLu788MwIhF/f7jPj9iVBfeBSypSvotPzrgVgkmPJA46[/tex], [tex=2.286x1.286]q0r5GWrYLihOEIwV4SvPJA==[/tex]是中心在原点半径为1的球面.证明:[tex=12.0x4.143]CHeu24N6LkUG91C/Qgg4Fu/iQSMA6F6255+OGWFx08TY5QwotKtcYUnCYePrhedOKNrGfvR+0ZrA6WkRPemDgd4A2ohO8vYwhvRZ/5+8jJKVM5sRazjexKdknB1+5pLbfjv5XS8pvC+KasEc2U2Oeg==[/tex][tex=2.143x1.286]qbD4rtr5HQ/5Vo+R2rMJsA==[/tex],其中[tex=4.286x1.286]ILBXTzTdXzAZKSMGKqiWInMNsbQJSmq/E0xXPVpw0X4=[/tex][tex=2.714x1.286]bj1j8liF8BcqF9bqjaRTRw==[/tex],[tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex],[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex],[tex=0.571x1.286]QPadlhZ3vYN/Hi29gpTrFw==[/tex]为常数.