• 2022-06-18
    设[tex=10.214x1.429]CxTnxcrC7FixIGaKHIyhm/n1jbKlD2G+HW9U++RbUCg=[/tex], 求[tex=2.0x1.357]nFMRkIwZ4tyYoUn5+LFAVo5KIQmsPALkewDS3uywU50=[/tex] 及 [tex=1.143x1.357]rjzw0bBUODiY66l+Mq83xKulzQYmLFG+hqTarGE9vg0=[/tex] 当 [tex=4.071x1.214]Dc/sMOb6gtpgwFvJ6tl55w==[/tex] 时的值.
  • 解 等式两端对 [tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex] 求导数,得[tex=11.071x1.357]QOEV8RBZUoB1eBAnjHRTqlneItQDOUEVgJIL6rLVmcPBEcTAWmOUoIoPHVOs7n3V/bXxCy0GkEJCDImMTHxuOg==[/tex](1)以 [tex=4.071x1.214]Dc/sMOb6gtpgwFvJ6tl55w==[/tex] 代人 (1) 式,得[tex=3.571x1.786]ABb6tS/o/AWiECZsSxxMAmITsu7bKEEI8ZhKpXYmkCamiewbXJ5K+LEHEBWOGYAH[/tex]将(1)式再对[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 求导数,得[tex=14.0x1.429]LaeVZ9e73jJQNfPpafqwCUPvfS/UByeUrmIcLdcIs+elfpKyExv3fB/07YC+5fkHOJ4Fhdvfoj8GT/Szs+utouQaLCpk/sgc0lqYFXq/8g9uDE2G7lDD97WXsx6t+O1whU2R8pVkIBm9FrRaoFxzqA==[/tex](2)以 [tex=6.571x1.357]hwQaG0/QKJ3kHYryu2E0N2H/ZT6tkAeuCWRMFg8knHg=[/tex] 代入(2)式,得[tex=5.429x2.357]ABb6tS/o/AWiECZsSxxMAmwfOScpFFlJoq4i11/xz3XQb8gRmaj9mC9sitsQUR8wdjvikG+GSiV5v6u/60HBpyCMuzlZv5wNbDSn/p/Ax6s=[/tex]将(2)式再对[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 求导数,得[tex=14.357x1.357]5otBuuIlD4dZyo8XSDVTBXd9OK3gVdF6LQ6LgofvHzmdHglu/IsonXENdtty1013jsDiOTwnEqrfWRVU4gWi+IWsj9+5LRZm5IPWkhZ/Rmsrtz+JE/2+TAqvITN3JNMSlSIyNNqkqRimNbw5mXBCydMmshott730QE0c5vgnEV5cpyQ5JoDaPaxV4YuEpaSJ[/tex](3)以[tex=10.429x2.357]hwQaG0/QKJ3kHYryu2E0Nzz7xUrNmxziyYhiLHpINsMTds94jcekfSt2WhgGcyGXQFoNzB8rIvKl6129Pm+s2g==[/tex] 代人(3)式,得[tex=5.143x2.357]ABb6tS/o/AWiECZsSxxMAhoxumb7nivuxTiLJnpLnlhfxH/ZNq3Ac/rCiezJWMMe2etZtlRupzhCVxMva2jEqquW7pV8DhfAtJ3kW+/Rnh8=[/tex]

    内容

    • 0

      由非空集合X的所有子集构成的集合称为X的幂集,记作[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(1)设X={a,b,c},求[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(2)设X是由n个元素组成的有限集,证明[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex]中含有[tex=1.0x1.0]j//x0/Z+ltpf5R8ThFOpMA==[/tex]个元素.

    • 1

      设[tex=11.786x2.643]RhC6dY/UDxCckegYF3zzjtvrDSY7fcv+nM/9onX/T18p0xU/i0hoGMeOTsD+WfLKnU3K8rGGu8Q9WxKy1kGXUA==[/tex](1)求[tex=2.0x1.357]NPUHTDidDwic6oV5lKQS1A==[/tex]的极大值[tex=0.643x1.0]rR3dilaQ9VopkNk1C1MR/g==[/tex];(2)若把[tex=0.643x1.0]rR3dilaQ9VopkNk1C1MR/g==[/tex]看作[tex=0.571x0.786]o5MZq+J4GBegBehUv1A7ag==[/tex]的函数,求当[tex=0.571x0.786]o5MZq+J4GBegBehUv1A7ag==[/tex]为何值时,[tex=0.643x1.0]rR3dilaQ9VopkNk1C1MR/g==[/tex]取极小值.

    • 2

      设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。

    • 3

      若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?

    • 4

      求下列题中平面图形的面积.  曲线 [tex=2.786x1.429]GAL3wqj4JSMLlcvcfbE2gA==[/tex] 与直线 [tex=4.071x1.214]Dc/sMOb6gtpgwFvJ6tl55w==[/tex] 所围的图形.