举一反三
- 设[tex=4.5x1.214]QqFixYebT/bIENpOaCF+iPnmSDhbBXJqnQSYyHEUtOE=[/tex]为正整数,[tex=4.714x1.357]2lPILZnEP8Ym22BTwkqk0ua1FY37pF6c6B1bVJvfAOo=[/tex]为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上恒等函数 ) ,试证明 [tex=0.714x1.214]OZevdH6uGNQxcBwPZQ11cg==[/tex]是一个双射.
- 设[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]是赋范线性空间[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]上的线性泛函, 则[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]连续的充要条件是:[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的零空间[tex=2.071x1.357]ACaVOH6l1K4ykFJiDz3UOA==[/tex]为[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的闭子空间
- 设h为X上函数,证明下列两个条件等价,(1)h为一单射(2)对任意X上的函数[tex=5.429x1.214]3BrfPgAFe5dbHQTMAYnbS+118W4YAj6CiW06EKMaxNI=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 设[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]是有限集[tex=7.714x1.357]sskGT5Tz8PulqEaZ4pYTBHAT9LX9QdIygrWMqtn3GqItVCA4xD1DZgVlJR2ZF3Dt[/tex]到自身的一个映射.证明:如果[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]是单射,那么[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]也是满射.
内容
- 0
(1) 叙述无界函数的定义;[br][/br](2) 证明: [tex=4.0x2.357]Skzfc0ZxjrbUnQ48HU5E0tXmPoDSwwji7Ikqu4Ix2eQ=[/tex]为 [tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex]上的无界函数;[br][/br](3) 举出函数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的例子,使[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]为闭区间 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]上的无界函数。
- 1
6.设[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]为区间[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]上的单调函数,证明:若[tex=2.071x1.214]uZALtAU1binRI5TJxsGXbiEQukpWazitXMwcS5eDdtY=[/tex]为[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的间断点,则[tex=0.929x1.0]tstbm1OuPyfyNcfVXQkZzA==[/tex]必是[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的第一类间断点。
- 2
(3)举出函数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的例子,使[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]为闭区间[tex=2.0x1.357]khGQOVqy3eZik4Tp7/+YjA==[/tex]上的无界函数。
- 3
设定义在[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]上的函数 [tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在0,1两点连续,且对任何[tex=2.0x1.071]syzvlYhv03GursgOyzwpOQ==[/tex] 有[tex=5.357x1.571]xu0ko2uR2HW/rSlh5BJHAPPr9ce/ZjkDTURfal+EWLA=[/tex] .证明 [tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]为常量函数.
- 4
设h为X上的函数,证明下列两个条件等价。(1)h为一满射,(2)对任意X上的函数[tex=5.429x1.214]OREhy0bsXZWZ6y8PdI7nwHYlaKprN6KYnR/FCpmEbdk=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]