• 2022-06-18 问题

    设函数[tex=9.857x1.214]QqFixYebT/bIENpOaCF+iNRy0HoEseEeocwsJOAUYPFfxnlf03Dq/qr3L/peWpqaV95iNHmkTLa8xv53PeIiMQ==[/tex]为[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]上的恒等函数,证明:(1)[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]是单射

    设函数[tex=9.857x1.214]QqFixYebT/bIENpOaCF+iNRy0HoEseEeocwsJOAUYPFfxnlf03Dq/qr3L/peWpqaV95iNHmkTLa8xv53PeIiMQ==[/tex]为[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]上的恒等函数,证明:(1)[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]是单射

  • 2022-06-27 问题

    设[tex=5.643x1.214]QqFixYebT/bIENpOaCF+iDKCGcypedUFWfoRV/ucTnM=[/tex] 为有限集合X与Y分别满足什么条件时,f可能是满射,单射和双射?

    设[tex=5.643x1.214]QqFixYebT/bIENpOaCF+iDKCGcypedUFWfoRV/ucTnM=[/tex] 为有限集合X与Y分别满足什么条件时,f可能是满射,单射和双射?

  • 2022-06-18 问题

    设[tex=4.5x1.214]QqFixYebT/bIENpOaCF+iPnmSDhbBXJqnQSYyHEUtOE=[/tex]为正整数,[tex=4.714x1.357]2lPILZnEP8Ym22BTwkqk0ua1FY37pF6c6B1bVJvfAOo=[/tex]为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上恒等函数 ) ,试证明 [tex=0.714x1.214]OZevdH6uGNQxcBwPZQ11cg==[/tex]是一个双射.

    设[tex=4.5x1.214]QqFixYebT/bIENpOaCF+iPnmSDhbBXJqnQSYyHEUtOE=[/tex]为正整数,[tex=4.714x1.357]2lPILZnEP8Ym22BTwkqk0ua1FY37pF6c6B1bVJvfAOo=[/tex]为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上恒等函数 ) ,试证明 [tex=0.714x1.214]OZevdH6uGNQxcBwPZQ11cg==[/tex]是一个双射.

  • 2022-06-28 问题

    设[tex=2.571x1.357]RUJ/Tt2raOklywg1mc6VVQ==[/tex]是一个离散的度量空间. 证明:如果[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]也是度量空间 ,则任何映射[tex=3.786x1.214]QqFixYebT/bIENpOaCF+iMi1uu1iRskNUlgfpNYbs1U=[/tex]都是连续的.

    设[tex=2.571x1.357]RUJ/Tt2raOklywg1mc6VVQ==[/tex]是一个离散的度量空间. 证明:如果[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]也是度量空间 ,则任何映射[tex=3.786x1.214]QqFixYebT/bIENpOaCF+iMi1uu1iRskNUlgfpNYbs1U=[/tex]都是连续的.

  • 2022-06-28 问题

    设[tex=2.571x1.357]RUJ/Tt2raOklywg1mc6VVQ==[/tex]是一个离散的度量空间。证明:如果[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]也是度量空间,则任何映射[tex=3.929x1.214]QqFixYebT/bIENpOaCF+iMot2th5ZD+6WQyP0q2fuQQ=[/tex]都是连续的。

    设[tex=2.571x1.357]RUJ/Tt2raOklywg1mc6VVQ==[/tex]是一个离散的度量空间。证明:如果[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]也是度量空间,则任何映射[tex=3.929x1.214]QqFixYebT/bIENpOaCF+iMot2th5ZD+6WQyP0q2fuQQ=[/tex]都是连续的。

  • 2022-06-10 问题

    设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个拓扑空间。证明:[tex=3.786x1.214]QMdjVDLE7+KCtqQUHHExMk7zKkZhF2bgTbHz3S0yf+A=[/tex]是一个连续映射当且仅当[tex=5.286x1.357]QqFixYebT/bIENpOaCF+iLSwrngb6SRC2Tn5gE953Mw=[/tex]是一个连续映射。

    设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个拓扑空间。证明:[tex=3.786x1.214]QMdjVDLE7+KCtqQUHHExMk7zKkZhF2bgTbHz3S0yf+A=[/tex]是一个连续映射当且仅当[tex=5.286x1.357]QqFixYebT/bIENpOaCF+iLSwrngb6SRC2Tn5gE953Mw=[/tex]是一个连续映射。

  • 2022-06-04 问题

    设[tex=2.071x1.214]ALf/tyqdFsvN4GUuyXnhwA==[/tex]为拓扑空间[tex=3.929x1.214]QqFixYebT/bIENpOaCF+iMot2th5ZD+6WQyP0q2fuQQ=[/tex]为连续映射。证明若[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的连通子集,则[tex=2.0x1.357]kfHtVfCJO3JYo5dbuIpcOQ==[/tex]为[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]的连通子集。

    设[tex=2.071x1.214]ALf/tyqdFsvN4GUuyXnhwA==[/tex]为拓扑空间[tex=3.929x1.214]QqFixYebT/bIENpOaCF+iMot2th5ZD+6WQyP0q2fuQQ=[/tex]为连续映射。证明若[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的连通子集,则[tex=2.0x1.357]kfHtVfCJO3JYo5dbuIpcOQ==[/tex]为[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]的连通子集。

  • 2022-06-01 问题

    拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]称为伪紧致的,如果对于任一连续映射[tex=6.571x1.357]QqFixYebT/bIENpOaCF+iOYIFpzQxTFHxwm4zQkZZEWoNPZ8j+8FX5pr7UM9yN0N[/tex]都是有界的。证明:度量空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是紧致的当且仅当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是伪紧致的。

    拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]称为伪紧致的,如果对于任一连续映射[tex=6.571x1.357]QqFixYebT/bIENpOaCF+iOYIFpzQxTFHxwm4zQkZZEWoNPZ8j+8FX5pr7UM9yN0N[/tex]都是有界的。证明:度量空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是紧致的当且仅当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是伪紧致的。

  • 2022-07-23 问题

    补足定理1、2、3中关于第一可数性公理情形的证明。定理1:设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个拓扑空间,[tex=3.929x1.214]QqFixYebT/bIENpOaCF+iMot2th5ZD+6WQyP0q2fuQQ=[/tex]是一个满的连续开映射。如果[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]满足第二可数性公理(满足第一可数性公理),则[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]也满足第二可数性公理(满足第一可数性公理)。定理2:满足第二可数性公理(满足第一可数性公理)的空间的任何一个子空间是满足第二可数性公理(满足第一可数性公理)的空间。定理3:设[tex=6.071x1.214]6m6IpLK9nxKlloS9uQjB0qJni044ihmKs30/YJo0lk0=[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个满足第二可数性公理(满足第一可数性公理)的空间,则积空间[tex=8.571x1.214]CkbBcgJrLNIwZHLDinyMQc2rREpGyL63UH9eLssnxMZ41jEsuFjVGRlxIHLZ5+Kx[/tex]沛满足第二可数性公理(满足第一可数性公理)。

    补足定理1、2、3中关于第一可数性公理情形的证明。定理1:设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个拓扑空间,[tex=3.929x1.214]QqFixYebT/bIENpOaCF+iMot2th5ZD+6WQyP0q2fuQQ=[/tex]是一个满的连续开映射。如果[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]满足第二可数性公理(满足第一可数性公理),则[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]也满足第二可数性公理(满足第一可数性公理)。定理2:满足第二可数性公理(满足第一可数性公理)的空间的任何一个子空间是满足第二可数性公理(满足第一可数性公理)的空间。定理3:设[tex=6.071x1.214]6m6IpLK9nxKlloS9uQjB0qJni044ihmKs30/YJo0lk0=[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个满足第二可数性公理(满足第一可数性公理)的空间,则积空间[tex=8.571x1.214]CkbBcgJrLNIwZHLDinyMQc2rREpGyL63UH9eLssnxMZ41jEsuFjVGRlxIHLZ5+Kx[/tex]沛满足第二可数性公理(满足第一可数性公理)。

  • 1