• 2022-06-19
    求空间立体的体积:  球体[tex=7.071x1.429]JfMnpkdfUBckNje06oWbkxICfDqqaGFf0a2/6dKXsoppuYH7yDxDcq5NyBzeWouz[/tex] 被圆柱面 [tex=8.643x1.5]NpYckZVVG8+fCRa2ItXnc7WLJKrYJoKDl7uWefA+7vo=[/tex]所截得的(含在圆柱面内的部分)立体.
  • 解   记 [tex=13.786x1.5]MJ8dn5pw9QUAqpuKeNHpHe3hvhgEk6crNzfi8jATDHC6eCsYlCHKpeUbblz0zvbRjRtY0+NUATofOD5W1l3vTw==[/tex]由立体的对称性,[tex=27.429x9.5]qeiYnKXLEhyhuGRg8yLtrwhXuQO7kd77cL6jgbl4V1W54EqX7wC5cN8oug3/RqG898uKs6fpUTqhdYRpfXYwr9I73ZD0OKf93iVyydih2P2ZMnXTWnC+RxBztqD4pfBoPRQFcX4NljYkMnLzsZT7l+tHigF7SS1GNrgheMepEexpfY7i6MdNz5bsnkV+TIK2Qm8A6EfnsZhGFyN3se7Ke7mS+eCgnFWmA+5875PTBHSBnRrPI+s79VLBo9W4Gt9iyCnKuPcTRa4wTOKccvgC6yDVztIE1JmJjnbGqNvUdhwnTqc1dnI+bhZdx0brZ8Mz3YqCk6NtnhmmR56mx1dKlVWuRESdbSR+M8BYAkphnpJiDzhybQYzseuCa+7IqdLZuUYPKeMR/sykG9uTHSUMbOGg8IkW8lnTslztLwQdIMsXXDhHKt+KX/YIsBhPqXIXsdaa2WSUSkNWR4r4CUvWHenq/QS7NQtBPUY2Zla+A+XkD0zvFhhnmbZq0eZCLFxqzOYO1SbDaOC465gJLjVu6gvrhEc8rEtQFxFKHWX4Lhff7Gt90GUZSvg1dCqXrPdyFOAPvxS1Ukvq7KEIfQCWH8TVD0f2pD3w9xbyeSl8kIPry5wBUxNkJoIWMkJQKtuwt/ukJAwu74hrxSHtgWB+BXtg4t2UaDCVRhtoDKdc36RZ8vFmUSwUich3sgikXFEi[/tex]

    内容

    • 0

      求球面 [tex=6.286x1.429]JfMnpkdfUBckNje06oWbk/d3BJfl9oueZjSVK/7okp0=[/tex] 和圆柱面 [tex=8.143x1.5]xJ9MfQFj+v5Ao4TGLXwJRgZI5szTh7WNvXn3pCdM6ZQ=[/tex] 所围立体的体积.

    • 1

      求由球面[tex=7.929x1.286]QwY3CbnOdl+ukx2Eamho1DXar6vx95H1kUSQO6EQd9M=[/tex]与柱面[tex=5.929x1.286]9bZQpSYifgquBYPcQEiZpyeLMnDjRCROeFJYCnAIQyk=[/tex]所围成立体的体积[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex](指含在柱体内的部分),如图所示。[img=271x256]1783f308af8ba1a.png[/img]

    • 2

      试用二重积分表示下面空间区域的体积由旋转抛物面 [tex=5.5x1.429]oOlyMWVDapTIIODTLRmv41BWw2FQvz4Ke0t19JomSHE=[/tex] 柱面 [tex=4.429x1.429]M0sn/fi/Rz9ean07Tx2wJQ==[/tex] 和 [tex=1.857x1.214]8v+QaGH4dkCVbzRhgAvkuw==[/tex] 坐标面所围成的立体 (在柱面内的部分)

    • 3

      求下列曲面的曲面面积:平面[tex=4.929x1.214]6UDX2uI6hAwALsIz8qXXuA==[/tex]被圆柱面[tex=4.929x1.429]Mtbwff/LpKtTIUlFRT2DHQ==[/tex]所截得部分;

    • 4

      求圆柱面[tex=5.571x1.429]lm8OILLOFyZ37ALtaFSTDIPz6fRFXxhVCB6Zwd7l0X0=[/tex]被球面[tex=7.5x1.429]JfMnpkdfUBckNje06oWbkxcbwwnjZtQ7arKZ8nwuXJc=[/tex]所截的部分的面积.