方程\((x + 2y){\rm{d}}x - x{\rm{d}}y = 0\)的通解是( )。
A: \(y = {x^2} - x\)
B: \(y = C{x^2} - x\)
C: \(y = C{x^2} +x\)
D: \(y = {x^2} +x\)
A: \(y = {x^2} - x\)
B: \(y = C{x^2} - x\)
C: \(y = C{x^2} +x\)
D: \(y = {x^2} +x\)
举一反三
- 求解常微分方程初值问题[img=224x61]1803072f6b2a05a.png[/img]应用的语句是 A: DSolve[2y[x]y"[x]==1+(y'[x])^2,y[0]==1,y'[0]==0,y[x],x B: DSolve[{2y[x]y" [x]==1+(y'[x])^2,y[0]==1,y'[0]==0},y[x],x] C: DSolve[{2y[x]y" [x]==1+(y^' [x])^2;y[0]==1;y'[0]==0},y[x],x] D: DSolve[{2yy"==1+(y^' )^2&&y[0]==1&&y'[0]==0},y[x],x]
- 下列语句语法正确的是( ) A: if x<2*y and x>y then y=x**2 B: if x<2*y : x>y then y=x^2 C: if x<2*y and x>y then y=x2 D: if x<2*y and x>y then y=x^2
- 方程$(x^2+1)(y^2-1) + xy y' = 0$的通解为 A: $y^2 = C \frac{e^{-x^2}}{x^2}$ B: $y = C \frac{e^{-x^2}}{x^2}$ C: $y^2 = C \frac{e^{-x^2}}{x^2}+1$ D: $y=C \frac{e^{-x^2}}{x^2}+1$
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 下列不等式正确的是( ) A: \( { { {e^x} + {e^y}} \over 2} < {e^ { { {x + y} \over 2}}}\quad (x \ne y)\) B: \((x + y){e^{x + y}} < x{e^{2x}} + y{e^{2y}}\quad (x > 0,y > 0,x \ne y)\) C: \( { { {x^n} + {y^n}} \over 2} < {( { { x + y} \over 2})^n}\quad (x > 0,y > 0,x \ne y,n > 1)\) D: \(x\ln x + y\ln y < (x + y)ln { { x + y} \over 2}\quad (x > 0,y > 0,x \ne y)\)