检验以下集合对于所指的线性运算是否构成实数域上的线性空间:平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法;
举一反三
- 判别以下集合对于所指的运算是否构成实数域上的线性空间?平而上不平行于某一向量的全体向量,对于向量的加法和数乘运算。
- 检验集合“与向量[tex=3.214x1.357]RW4o7jrr4add3eYaXwlNZg==[/tex]不平行的全体[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]维数组向量,对于数组向量的加法与数量乘法”对于所指的线性运算是否构成实数域上的线性空间.
- 检验以下集合对于所指的线性运算是否构成实数域上的线性空间 平面上全体向量,对于通常的加法和如下定义的数量 乘法[tex=3.143x1.0]sU10wVmc6aUdsgKesqLMKo4s39WCtB02WM8guz2FzM6OfomwX7UwpyoaK8Ll8CXg[/tex]
- 平面上不平行于某一固定向量的所有向量的集合,对于向量的加法和数与向量的乘法构成线性空间。( )
- 检验集合“平面上全体向量,对于通常的加法和如下定义的数量乘法:[tex=3.857x1.0]oEJV7BgUJe46zB7KDQ5H9E93fEZew5AynXGMPf1p2WM=[/tex]”对于所指的线性运算是否构成实数域上的线性空间.