设随机变量(X,Y)在区域D上服从均匀分布,其中D为x轴, y轴及直线y=2x+1围成的三角形区域,求条件密度函数[tex=3.857x1.429]8IFfTRV05Bn9MqAhQGbVjv1KZGOhfzqIVmcVak+VRkI=[/tex].
举一反三
- 设二维随机变量(X,Y)在区域B上服从均匀分布,B是由x轴,y轴及直线y=2x+1所围成的三角形区域,则其联合概率密度函数为()。
- 设二维随机变量(X,Y)在平面区域D上服从均匀分布,其中区域D由曲线[tex=2.857x1.357]J53aqhLrfJpiGdvJQtjBGg==[/tex]及直线[tex=6.429x1.429]XY7FoXzK2Qqkem/sL9X67rVU1Pa43Z9ZNS4cGkiZS2c=[/tex]围成,写出(X,Y)的密度函数,并求(X,Y)关于X的边缘密度函数在[tex=1.857x1.0]eGiq0tjJl6Zpvmve44HF/A==[/tex]的值.
- 设(X,Y) 服从区域D上的均匀分布,其中D由x轴,y轴,x+y=1围成,则P{X<Y}=( ) A: 1/8 B: 1/4 C: 1/2 D: 1
- 设(X,Y)服从在区域D上的均匀分布,其中D为x轴、y轴及x+y=1所围成,求X与Y的协方差Cov(X,Y).
- 中国大学MOOC:"设(X,Y) 服从区域D上的均匀分布,其中D由x轴,y轴,x+y=1围成,则P{X "1/2";