如果 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶复方阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似于[tex=12.5x2.786]NovbxKl63Ey/milqTcbe/8xrWUI/SyQkWJs1uodj6nPWe/eYr/J4xTq7sSe4kvItEm+oxG8NZqOuG7BtYHFoMweend9nnAloQY835ERYXzOBAQrOyri5vd/mLZsq9XAidlnAlJLGDo+lp5oWc8fkgw==[/tex]就称[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为反射.求证: 如果 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 满足条件 [tex=2.643x1.429]vDtFbFN2n8pkyvWYREldMQ==[/tex]则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]可以分解为不超过 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个反射的乘积.
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶幂零方阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶可逆方阵,且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 可换,则 [tex=5.071x1.214]RN2thfSI1MmKxRcibVWDuJHiSryPX2cHjTCV9twFdmY=[/tex] 都是可逆矩阵.
- 若矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 即 [tex=2.786x1.0]t6ogScZVzQ6nmR7J34fx7Q==[/tex] 但 [tex=4.5x1.429]LeMsK/GHf6ch8ZOCybGouXwgjeQprbWyKA1XUXYVQGI=[/tex] 如果 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 也是同阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 相似于 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex].
- 证明:设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]不可逆,则存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶非零的方阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex],使得[tex=2.786x1.0]vO6oJG3HrH4S8DSEg9aQaQ==[/tex]。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵, 证明:[tex=5.429x1.929]cRSSutUe8lxP7o+KrExJjIlQDv25D1qSOdQh99TznTk=[/tex]
- 设[tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex]表示[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的附属方阵,证明:[tex=5.786x1.357]cRSSutUe8lxP7o+KrExJjIlQDv25D1qSOdQh99TznTk=[/tex],其中[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]也是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵。