若[tex=4.071x1.429]856Pl9HNlDstK+TaTvDo/ewrXQwzgNxwJf7mRgLjM9c=[/tex],试证[tex=4.929x1.357]GA+Zjqo9TmtwmLoUNT5/SA==[/tex].
举一反三
- 如果X满足[tex=1.0x1.214]uDLq1pltx8bidzPpXavtVw==[/tex]公理和[tex=1.0x1.214]HSZQQmMoQLPTE8orMMvtgA==[/tex]公理,则也满足[tex=1.0x1.214]9/dZqDJTFQ9zWNw2dnPh4g==[/tex]公理。
- [tex=36.929x1.286]9/dp9aAo6LIa2iwMXRtTgyprikANdnte3+CUjIGesWWNtykaTS44fZprxcXs9YwIMqZ30Skk8EoK5yhAVysRH26wHHIclEfqBvx0vPLZYrjHtYXmYNVVV8FkNzMFXkQsAIR/9mOmk53gJVEYZIbix+YjeMK8tA32UO/B/z9FT0I=[/tex][tex=36.929x1.286]9/dp9aAo6LIa2iwMXRtTgyprikANdnte3+CUjIGesWWNtykaTS44fZprxcXs9YwIMqZ30Skk8EoK5yhAVysRH26wHHIclEfqBvx0vPLZYrjHtYXmYNVVV8FkNzMFXkQsAIR/9mOmk53gJVEYZIbix+YjeMK8tA32UO/B/z9FT0I=[/tex]
- 若[tex=5.429x1.357]ZjMdT7m98jm39QBRyKdYOg==[/tex]( 矩形序列 )求[tex=4.714x1.357]F/hAjBjkWM7oKDhEPHBvB0KQzoADGG/9/gBejLIN1EE=[/tex]
- 两个[tex=1.0x1.214]9/dZqDJTFQ9zWNw2dnPh4g==[/tex]空间的积空间是[tex=1.0x1.214]9/dZqDJTFQ9zWNw2dnPh4g==[/tex]的。
- 设 [tex=5.071x1.357]NovbxKl63Ey/milqTcbe/wszkUHGNmkHJbHevPpnbIs=[/tex] 试证 [tex=4.857x1.429]856Pl9HNlDstK+TaTvDo/aRkfMjkLpXvReEf/pIBn4s=[/tex] 当且仅当 [tex=7.143x1.286]kx6cykSlkcsNTqXqkQKcoKXPcdv1nSl118PrR9F0hyM=[/tex],[tex=3.357x1.286]MJZSzEq0hEXZHn6Di9cJdA==[/tex].