• 2022-06-15
    用牛顿法和求重根迭代法计算方程[tex=10.429x2.0]V3agB1ErcLd6QBd2mvwUjKnhNNWRAD5G3oq8uzIlh0VTz969cXUrO2L5a6/hlQpw[/tex]的一个近似根,准确到[tex=2.0x1.286]uc/51FPzwMrqhdxwiy1jpw==[/tex],初始值[tex=3.071x1.786]J/sKEMUgDpFVN51XMINpyOE0miu/9RFA+OfdtsxMaCE=[/tex]。
  • 分析:本题考查了牛顿迭代法解方程。解:[tex=8.643x2.0]V3agB1ErcLd6QBd2mvwUjKnhNNWRAD5G3oq8uzIlh0XVb1+1qttVa1unfUEzg5mY[/tex]的根[tex=1.0x1.286]5C6IBpTBFgCg1MSQDUY/RA==[/tex]为2重根,且[tex=14.5x2.357]nOJBJucVwlQuHq02hM9Tsks7dlXyjAPCzfXVaWC9zj7xz9C2EqsowJX4uHXeNYNwA/cPYh6yTVGAsrv2X5VtIxiEvdJ8Nno+ei7YvKVbPX19e61Au5b1zdrCfj1FPoVh[/tex]用牛顿法迭代公式为[tex=16.571x6.357]qeiYnKXLEhyhuGRg8yLtr3cuBGWqSzbJrIsncZd/VfOZzNYVubGEuX4etzkzvglLUmdg6pZ5OxXldbJoOODxa38byLyHpiczhInrg07G4+JrSC70gZVMiyubMYY5yWFe+LyvxJpfY2hNgs7Jm4VqC7n4NO/tqwEdfKf2RyHg6lg1Ox4flyvz/O9b/V30bof6sNPLgD7TFODXi/LYQPufMqBYbpcVgqyu1IoTPm9gliU1u0Vl5+0ao+5QyVYBztB5lWPPgB2nSOX1uXxWI2xahcu3HIssS7X6KXfN8a3gOuTR0QMr6Ui02OCv1++Nb3yEX3eVV2YGtl7kuKrghfDjgA==[/tex][tex=5.714x1.286]owKKG1i0umRrc1AfK1UzTPpvytw6EMlXzvKKkZQ0kqY=[/tex]令[tex=3.071x1.786]J/sKEMUgDpFVN51XMINpyOE0miu/9RFA+OfdtsxMaCE=[/tex],则[tex=13.857x1.286]fEaNj5iq8i0d8IgOhqaTk+HHl+tOndQSjtLYWNBK9nMQU97cAz+XkCnhYPp2qJML[/tex],迭代到[tex=6.357x1.286]KRzHXyTM+x3nNjauFISF2b976RBV9f71iFKPYb/fTUw=[/tex],[tex=9.214x1.286]ZhxJQlK4gcYXPrq+GpuAvngyhxOjZ6bWle0s5RZKA5a4tO4vIr53gtKuGOLce9R/[/tex]。用求重根的迭代公式,迭代公式为[tex=10.929x2.571]SS76MPOdk821+2ozgAGWCfJ9jekynXLmpilOIZK9I5hm9eVK0oGLCSNPdAYVUCs9LSwwn1YPdRiUwgU9ZTRzES9WSCd0YiduhJrIQD44j8I=[/tex],[tex=5.714x1.286]owKKG1i0umRrc1AfK1UzTPpvytw6EMlXzvKKkZQ0kqY=[/tex]取[tex=3.071x1.786]J/sKEMUgDpFVN51XMINpyOE0miu/9RFA+OfdtsxMaCE=[/tex],则[tex=6.0x1.286]GxAv0LeHiJjC+wGbBlOjO6MUk/q9x2Oj8N2uBy44Zy8=[/tex],[tex=6.0x1.286]D7clVBaDG9r9jpHdQm1cqOOXJZWxrl1jgV520GbNg0g=[/tex],[tex=6.0x1.286]Ec9goXs8PGSVLp9Q64wuDYsyqyS0lq+I+dfsHsU8o2s=[/tex],[tex=6.0x1.286]vmKNW+4BrS5SJehso5kFl0kiTMfARTAEAFkI0gJpzGk=[/tex],[tex=6.0x1.286]akvb41Tota/cM8yCEz689XttCAOE4Pz/ynanrcfUEzY=[/tex]。四次迭代达到了上面[tex=1.357x1.286]pIJcrVt25zrSkf3cPLVc7A==[/tex]的结果。若用重根二阶收敛公式,则有[tex=16.357x2.5]SS76MPOdk821+2ozgAGWCbdrhlLCYi7grBByH8AZ3H8CZRmvzjyIfM37TqlkseGAhV3zeHeLoX/w30uUyA5OkraSjMkBIsIsqwQZbigE1KTWLwpYAAIdzrHcwNVcYwbtjl6PyowR/VUK5uRs5bGjCoPHgMnzIcyUhJkp1VO3eEOHH05UEujYwjLxh/utgGdz94QuQLk2Z+07iju+BcxRIvmZc5TZdlfFQ74yt6zN6bzRtQx0fwOk4+HeD6OAicN9[/tex] 将[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex],[tex=2.143x1.286]FKq9v1pXcOtjy1Cl2h+pXv4qvrtr57gpoaVePO4m860=[/tex]及[tex=10.071x2.571]YRReUQzIsdcIgxj5peM19APyAapWGLCi7051WE0jX/p2+hB7wBeByQ6YJBczz9bmYdzVSAYChRmp41YV1/N+fQ==[/tex][tex=9.571x2.357]fie3DGuy7OxUi/UEC9InAohdkx7NomOZXOlGVY0O/VHoHeeYfT44zIpTc9Gafs9D[/tex]代入上述迭代公式,得[tex=21.143x2.786]SS76MPOdk821+2ozgAGWCWO085P3BMogKpO39NnYzra4kX6sXJ1FIyOfXbKRn9hMEFMh6NdPs2IUzLbWeQZrNWkY8yi6gEW9+NUffI1463rcPAC66ypPaCWRCM0AmLVm+wGdarDzc/6TM619nw7y6NOXOKxCN0Q1ci0IquYqO5tUb/04YvzQOOuf5YauqDz078Hk27mVs+FJo3WPguB1y7GSNyZTCMqPBxUtdE46NMv+v3n4lg56XvJOCkFIKEcYXiQy13T9Rab6fN+snjWB1Q==[/tex]取[tex=3.071x1.786]J/sKEMUgDpFVN51XMINpyOE0miu/9RFA+OfdtsxMaCE=[/tex],得[tex=6.0x1.286]VVDbny/n9gZ8lnkj0T5D3+SXtGtyUFpO8fXvLV62wBY=[/tex],[tex=6.0x1.286]OnVubzUD7n7JkB/jXE2MV5HUV2cZ1ASFC9mMTBncnc4=[/tex],[tex=6.0x1.286]/u35957pQX25uE7JTdIVzmZYHOiCCeJlwETMPlQ/j7I=[/tex],[tex=6.0x1.286]vmKNW+4BrS5SJehso5kFl0kiTMfARTAEAFkI0gJpzGk=[/tex],[tex=6.0x1.286]akvb41Tota/cM8yCEz689XttCAOE4Pz/ynanrcfUEzY=[/tex]。结果与公式用求重根的迭代公式计算结果的相同。小结:牢记牛顿法计算的4个步骤:准备;迭代;控制;修改。

    举一反三

    内容

    • 0

      设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.

    • 1

      用牛顿法求方程[tex=6.714x1.286]NuukdrLpk8C6s+xZahdZ6w==[/tex]在区间[tex=1.929x1.286]uj8YUp05TOxtrNrRUulr5g==[/tex]内根的近似值,准确到六位小数 .

    • 2

      写出用牛顿迭代法求方程 [tex=3.857x1.143]zr4j5FP3yWlTtSU8V4mAgQ==[/tex] 的根 [tex=1.429x1.357]SKHGQiD5VUmRNAQNNAHuIA==[/tex] 的迭代公式(其中 [tex=2.429x1.071]Rgnw6H9bxYi8lkJDrClV2w==[/tex]),并计算 [tex=3.214x1.429]2MRMn20OtRBaXlrdqVCGc+4mXYLGuWcyIJ7LRphfdVA=[/tex](精确至 [tex=0.5x1.0]gHMbUA0oVdAA3pW6qwPDjw==[/tex] 位有效数字)。分析在什么范围内取值 [tex=0.929x1.0]Y+PfjwqPGaCwZuFlOl1opw==[/tex],就可保证牛顿法收敛。

    • 3

      用牛顿法求方程[tex=4.5x1.286]s1sF/N43V0LjXcliSnvtYQ==[/tex]在区间[tex=2.714x1.286]scYOl+SzOqdr9AOwlBxSjw==[/tex]区间内根的近似值,准确到六位小数 .

    • 4

      用简单迭代法求下列方程的根,并验证收敛性条件,精确至 [tex=0.5x1.0]gHMbUA0oVdAA3pW6qwPDjw==[/tex] 位有效数字。1) [tex=4.929x1.357]Lt1qdkIcbJ6rvLY8Oy70OA==[/tex];3) [tex=8.714x1.357]yElsQvRghZUYucdNW9lleb62QloKzE+BwXgdLeUt2xI=[/tex];2) [tex=4.071x1.143]n1ZRctYcuGPiF0Ch511gMA==[/tex];4) [tex=4.429x1.357]kfg2XKfjtAAAOTX+FVYxbnFOvGl/iIp+at+IrmA5XVI=[/tex].